HOME
*





Skid-to-turn
{{Unreferenced, date=July 2008 Skid-to-turn is an aeronautical vehicle reference for how such a vehicle may be turned. It applies to vehicles such as aircraft and missiles. In skid-to-turn, the vehicle does not roll to a preferred angle. Instead commands to the control surfaces are mixed to produce the maneuver in the desired direction. This is distinct from the coordinated turn used by aircraft pilots. For instance, a vehicle flying horizontally may be turned in the horizontal plane by the application of rudder controls to place the body at a sideslip angle relative to the airflow. This sideslip flow then produces a force in the horizontal plane to turn the vehicle's velocity vector. The benefit of the skid-to-turn maneuver is that it can be performed much quicker than a coordinated turn. This is useful when trying to correct for small errors. The disadvantage occurs if the vehicle has greater maneuverability in one body plane than another. In that case the turns are less ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Skid Steer
A skid loader, skid-steer loader, SSLs or skidsteer is a small, rigid-frame, engine-powered machine with lift arms that can attach to a wide variety of buckets and other labor-saving tools or attachments. Skid-steer loaders are typically four-wheeled or tracked vehicles with the front and back wheels on each side mechanically linked together to turn at the same speed, and where the left-side drive wheels can be driven independently of the right-side drive wheels. This is accomplished by having two separate and independent transmissions; one for the left side wheels and one for the right side wheels. Earliest versions of skid steer loaders used forward and reverse clutch drives. Virtually all modern skid steers designed and built since the mid-1970s use two separate hydrostatic transmissions (one for the left side and one for the right side). The wheels typically have no separate steering mechanism and hold a fixed straight alignment on the body of the machine. Turning is accomplish ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flight Control Surfaces
Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude. Development of an effective set of flight control surfaces was a critical advance in the development of aircraft. Early efforts at fixed-wing aircraft design succeeded in generating sufficient lift to get the aircraft off the ground, but once aloft, the aircraft proved uncontrollable, often with disastrous results. The development of effective flight controls is what allowed stable flight. This article describes the control surfaces used on a fixed-wing aircraft of conventional design. Other fixed-wing aircraft configurations may use different control surfaces but the basic principles remain. The controls (stick and rudder) for rotary wing aircraft (helicopter or autogyro) accomplish the same motions about the three axes of rotation, but manipulate the rotating flight controls (main rotor disk and tail rotor disk) in a completely different manner. F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sideslip Angle
A slip is an aerodynamic state where an aircraft is moving ''somewhat'' sideways as well as forward relative to the oncoming airflow or relative wind. In other words, for a conventional aircraft, the nose will be pointing in the opposite direction to the bank of the wing(s). The aircraft is not in coordinated flight and therefore is flying inefficiently. Background Flying in a slip is aerodynamically inefficient, since the lift-to-drag ratio is reduced. More drag is at play consuming energy but not producing lift. Inexperienced or inattentive pilots will often enter slips unintentionally during turns by failing to coordinate the aircraft with the rudder. Airplanes can readily enter into a slip climbing out from take-off on a windy day. If left unchecked, climb performance will suffer. This is especially dangerous if there are nearby obstructions under the climb path and the aircraft is underpowered or heavily loaded. A slip can also be a ''piloting maneuver'' where the pilot del ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Velocity Vector
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity; both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called , being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an ''acceleration''. Constant velocity vs acceleration To have a ''constant velocity'', an object must have a constant speed in a constant direction. Constant direction const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aircraft Specific Energy
Aircraft-specific energy is a form of specific energy applied to aircraft and missile trajectory analysis. It represents the combined kinetic energy, kinetic and potential energy of the vehicle at any given time. It is the total energy of the vehicle (relative to the Earth's surface) per unit weight of the vehicle and being independent of the mass of the vehicle provides a powerful tool for the design of optimal trajectories. Aircraft-specific energy is very similar to specific orbital energy except that it is expressed as a positive quantity. A zero value of aircraft-specific energy represents an aircraft at rest on the Earth's surface, and increases as speed and altitude increases. Orbital specific energy is zero at infinite altitude and decreases as one approaches the surface of the earth. As with other forms of specific energy, aircraft-specific energy is an intensive property and is represented in units of length since it is independent of the mass of the vehicle. Applicatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]