HOME
*





Size Homotopy Group
The concept of size homotopy group is analogous in size theory of the classical concept of homotopy group. In order to give its definition, let us assume that a size pair (M,\varphi) is given, where M is a closed manifold of class C^0\ and \varphi:M\to \mathbb^k is a continuous function. Consider the lexicographical order \preceq on \mathbb^k defined by setting (x_1,\ldots,x_k)\preceq(y_1,\ldots,y_k)\ if and only if x_1 \le y_1,\ldots, x_k \le y_k. For every Y\in\mathbb^k set M_=\. Assume that P\in M_X\ and X\preceq Y\ . If \alpha\ , \beta\ are two paths from P\ to P\ and a homotopy from \alpha\ to \beta\ , based at P\ , exists in the topological space M_\ , then we write \alpha \approx_\beta\ . The first size homotopy group of the size pair (M,\varphi)\ computed at (X,Y)\ is defined to be the quotient set of the set of all paths from P\ to P\ in M_X\ with respect to the equivalence relation \approx_\ , endowed with the operation induced by the usual composition o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Size Theory
In mathematics, size theory studies the properties of topological spaces endowed with \mathbb^k-valued functions, with respect to the change of these functions. More formally, the subject of size theory is the study of the natural pseudodistance between size pairs. A survey of size theory can be found in .Silvia Biasotti, Leila De Floriani, Bianca Falcidieno, Patrizio Frosini, Daniela Giorgi, Claudia Landi, Laura Papaleo, Michela Spagnuolo, Describing shapes by geometrical-topological properties of real functions, ACM Computing Surveys, vol. 40 (2008), n. 4, 12:1–12:87. History and applications The beginning of size theory is rooted in the concept of size function, introduced by Frosini.Patrizio Frosini, ''A distance for similarity classes of submanifolds of a Euclidean space'', Bulletin of the Australian Mathematical Society, 42(3):407–416, 1990. Size functions have been initially used as a mathematical tool for shape comparison in computer vision and pattern reco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Path (topology)
In mathematics, a path in a topological space X is a continuous function from the closed unit interval , 1/math> into X. Paths play an important role in the fields of topology and mathematical analysis. For example, a topological space for which there exists a path connecting any two points is said to be path-connected. Any space may be broken up into path-connected components. The set of path-connected components of a space X is often denoted \pi_0(X). One can also define paths and loops in pointed spaces, which are important in homotopy theory. If X is a topological space with basepoint x_0, then a path in X is one whose initial point is x_0. Likewise, a loop in X is one that is based at x_0. Definition A ''curve'' in a topological space X is a continuous function f : J \to X from a non-empty and non-degenerate interval J \subseteq \R. A in X is a curve f : , b\to X whose domain , b/math> is a compact non-degenerate interval (meaning a is homeomorphic to , 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Size Pair
In mathematics, size theory studies the properties of topological spaces endowed with \mathbb^k-valued functions, with respect to the change of these functions. More formally, the subject of size theory is the study of the natural pseudodistance between size pairs. A survey of size theory can be found in .Silvia Biasotti, Leila De Floriani, Bianca Falcidieno, Patrizio Frosini, Daniela Giorgi, Claudia Landi, Laura Papaleo, Michela Spagnuolo, Describing shapes by geometrical-topological properties of real functions, ACM Computing Surveys, vol. 40 (2008), n. 4, 12:1–12:87. History and applications The beginning of size theory is rooted in the concept of size function, introduced by Frosini.Patrizio Frosini, ''A distance for similarity classes of submanifolds of a Euclidean space'', Bulletin of the Australian Mathematical Society, 42(3):407–416, 1990. Size functions have been initially used as a mathematical tool for shape comparison in computer vision and pattern reco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Size Functor
Given a size pair (M,f)\ where M\ is a manifold of dimension n\ and f\ is an arbitrary real continuous function defined on it, the i-th size functor, with i=0,\ldots,n\ , denoted by F_i\ , is the functor in Fun(\mathrm,\mathrm)\ , where \mathrm\ is the category of ordered real numbers, and \mathrm\ is the category of Abelian groups, defined in the following way. For x\le y\ , setting M_x=\\ , M_y=\\ , j_\ equal to the inclusion from M_x\ into M_y\ , and k_\ equal to the morphism in \mathrm\ from x\ to y\ , * for each x\in\R\ , F_i(x)=H_i(M_x);\ * F_i(k_)=H_i(j_).\ In other words, the size functor studies the process of the birth and death of homology classes as the lower level set changes. When M\ is smooth and compact and f\ is a Morse function, the functor F_0\ can be described by oriented trees, called H_0\ − trees. The concept of size functor was introduced as an extension to homology theory and category theory of the idea of size function. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Size Function
Size functions are shape descriptors, in a geometrical/topological sense. They are functions from the half-plane x to the natural numbers, counting certain connected components of a topological space. They are used in pattern recognition and topology.


Formal definition

In , the size function \ell_:\Delta^+=\\to \mathbb associated with the
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homomorphism
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "same" and () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German meaning "similar" to meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925). Homomorphisms of vector spaces are also called linear maps, and their study is the subject of linear algebra. The concept of homomorphism has been generalized, under the name of morphism, to many other structures that either do not have an underlying set, or are not algebraic. This generalization is the starting point of category theory. A homomorphism may also be an isomorphism, an endomorphism, an automorphism, etc. (see below). Each of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Loop (topology)
In mathematics, a loop in a topological space is a continuous function from the unit interval to such that In other words, it is a path whose initial point is equal to its terminal point.. A loop may also be seen as a continuous map from the pointed unit circle into , because may be regarded as a quotient of under the identification of 0 with 1. The set of all loops in forms a space called the loop space of . See also *Free loop *Loop group *Loop space *Loop algebra *Fundamental group *Quasigroup In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure resembling a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that they need not be associative and need not have ... References Topology es:Grupo fundamental#Lazo {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quotient Set
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \,\sim\, on S, the of an element a in S, denoted by is the set \ of elements which are equivalent to a. It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of S. This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of S by \,\sim\,, and is denoted by S / \sim. When the set S has some structure (such as a group operation or a topology) and the equivalence relation \,\sim\, is compatible with this structure, the quotient set often inherits a similar structure from its parent set. Exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or ''holes'', of a topological space. To define the ''n''-th homotopy group, the base-point-preserving maps from an ''n''-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes. Two mappings are homotopic if one can be continuously deformed into the other. These homotopy classes form a group, called the ''n''-th homotopy group, \pi_n(X), of the given space ''X'' with base point. Topological spaces with differing homotopy groups are never equivalent ( homeomorphic), but topological spaces that homeomorphic have the same homotopy groups. The notion of homotopy of paths was introduced by Camille Jordan. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]