Single-pass Compiler
In computer programming, a one-pass compiler is a compiler that passes through the parts of each compilation unit only once, immediately translating each part into its final machine code. This is in contrast to a multi-pass compiler which converts the program into one or more intermediate representations in steps between source code and machine code, and which reprocesses the entire compilation unit in each sequential pass. This refers to the logical functioning of the compiler, not to the actual reading of the source file once only. For instance, the source file could be read once into temporary storage but that copy could then be scanned many times. The IBM 1130 Fortran compiler stored the source in memory and used many passes; by contrast the assembler, on systems lacking a disc storage unit, required that the source deck of cards be presented twice to the card reader/punch. Properties One-pass compilers are smaller and faster than multi-pass compilers. One-pass compilers a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Programming
Computer programming is the process of performing a particular computation (or more generally, accomplishing a specific computing result), usually by designing and building an executable computer program. Programming involves tasks such as analysis, generating algorithms, profiling algorithms' accuracy and resource consumption, and the implementation of algorithms (usually in a chosen programming language, commonly referred to as coding). The source code of a program is written in one or more languages that are intelligible to programmers, rather than machine code, which is directly executed by the central processing unit. The purpose of programming is to find a sequence of instructions that will automate the performance of a task (which can be as complex as an operating system) on a computer, often for solving a given problem. Proficient programming thus usually requires expertise in several different subjects, including knowledge of the application domain, specialized algori ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Considered Harmful
GoTo (goto, GOTO, GO TO or other case combinations, depending on the programming language) is a statement found in many computer programming languages. It performs a one-way transfer of control to another line of code; in contrast a function call normally returns control. The jumped-to locations are usually identified using labels, though some languages use line numbers. At the machine code level, a goto is a form of branch or jump statement, in some cases combined with a stack adjustment. Many languages support the goto statement, and many do not (see ยง language support). The structured program theorem proved that the goto statement is not necessary to write programs that can be expressed as flow charts; some combination of the three programming constructs of sequence, selection/choice, and repetition/iteration are sufficient for any computation that can be performed by a Turing machine, with the caveat that code duplication and additional variables may need to be introduce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compilers
In computing, a compiler is a computer program that translates computer code written in one programming language (the ''source'' language) into another language (the ''target'' language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language (e.g. assembly language, object code, or machine code) to create an executable program. Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman - Second Edition, 2007 There are many different types of compilers which produce output in different useful forms. A ''cross-compiler'' produces code for a different CPU or operating system than the one on which the cross-compiler itself runs. A ''bootstrap compiler'' is often a temporary compiler, used for compiling a more permanent or better optimised compiler for a language. Related software include, a program that translates from a low-level language to a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NELIAC
The Navy Electronics Laboratory International ALGOL Compiler (NELIAC) is a dialect and compiler implementation of the programming language ALGOL 58, developed by the Navy Electronics Laboratory (NEL) in 1958. It was designed for numeric and logical computations and was the first language to provide a bootstrap implementation. Origin NELIAC was the brainchild of Harry Huskey, then chairperson of the Association for Computing Machinery (ACM) and a well known computer scientist, and supported by Maury Halstead, the head of the computing center at NEL. The earliest version was implemented on the prototype AN/USQ-17 computer (called ''the Countess'', after Countess Ada Lovelace) at the laboratory. It was the world's first self-compiling compiler, a trait called bootstrapping. This means that the compiler was first coded in simplified form in assembly language "the bootstrap", and then rewritten in its own language, compiled by this "bootstrap" compiler, and recompiled by itself, maki ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Burroughs Large Systems
The Burroughs Large Systems Group produced a family of large 48-bit mainframes using stack machine instruction sets with dense syllables.E.g., 12-bit syllables for B5000, 8-bit syllables for B6500 The first machine in the family was the B5000 in 1961. It was optimized for compiling ALGOL 60 programs extremely well, using single-pass compilers. It evolved into the B5500. Subsequent major redesigns include the B6500/B6700 line and its successors, as well as the separate B8500 line. In the 1970s, the Burroughs Corporation was organized into three divisions with very different product line architectures for high-end, mid-range, and entry-level business computer systems. Each division's product line grew from a different concept for how to optimize a computer's instruction set for particular programming languages. "Burroughs Large Systems" referred to all of these large-system product lines together, in contrast to the COBOL-optimized Medium Systems (B2000, B3000, and B4000) or the f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ALGOL 68R
ALGOL (; short for "Algorithmic Language") is a family of imperative computer programming languages originally developed in 1958. ALGOL heavily influenced many other languages and was the standard method for algorithm description used by the Association for Computing Machinery (ACM) in textbooks and academic sources for more than thirty years. In the sense that the syntax of most modern languages is "Algol-like", it was arguably more influential than three other high-level programming languages among which it was roughly contemporary: FORTRAN, Lisp, and COBOL. It was designed to avoid some of the perceived problems with FORTRAN and eventually gave rise to many other programming languages, including PL/I, Simula, BCPL, B, Pascal, and C. ALGOL introduced code blocks and the begin...end pairs for delimiting them. It was also the first language implementing nested function definitions with lexical scope. Moreover, it was the first programming language which gave detailed atte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Forward Declaration
In computer programming, a forward declaration is a declaration of an identifier (denoting an entity such as a type, a variable, a constant, or a function) for which the programmer has not yet given a complete definition. It is required for a compiler to know certain properties of an identifier (size for memory allocation, data type for type checking, such as type signature of functions), but not other details, like the particular value it holds (in case of variables or constants) or definition (in the case of functions). This is particularly useful for one-pass compilers and separate compilation. Forward declaration is used in languages that require declaration before use; it is necessary for mutual recursion in such languages, as it is impossible to define such functions (or data structures) without a forward reference in one definition: one of the functions (respectively, data structures) must be defined first. It is also useful to allow flexible code organization, for example ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mutual Recursion
In mathematics and computer science, mutual recursion is a form of recursion where two mathematical or computational objects, such as functions or datatypes, are defined in terms of each other. Mutual recursion is very common in functional programming and in some problem domains, such as recursive descent parsers, where the datatypes are naturally mutually recursive. Examples Datatypes The most important basic example of a datatype that can be defined by mutual recursion is a tree, which can be defined mutually recursively in terms of a forest (a list of trees). Symbolically: f: .html"_;"title="[1">[1_...,_t[k _t:_v_f A_forest_''f''_consists_of_a_list_of_trees,_while_a_tree_''t''_consists_of_a_pair_of_a_value_''v''_and_a_forest_''f''_(its_children)._This_definition_is_elegant_and_easy_to_work_with_abstractly_(such_as_when_proving_theorems_about_properties_of_trees),_as_it_expresses_a_tree_in_simple_terms:_a_list_of_one_type,_and_a_pair_of_two_types._Further,_it_matches_many_alg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type Checking
In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term. Type systems formalize and enforce the otherwise implicit categories the programmer uses for algebraic data types, data structures, or other components (e.g. "string", "array of float", "function returning boolean"). Type systems are often specified as part of programming languages and built into interpreters and compilers, although the type system of a language can be extended by optional tools that perform added checks using the language's original type syntax and grammar. The main purpose of a type system in a programming language ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subroutine
In computer programming, a function or subroutine is a sequence of program instructions that performs a specific task, packaged as a unit. This unit can then be used in programs wherever that particular task should be performed. Functions may be defined within programs, or separately in libraries that can be used by many programs. In different programming languages, a function may be called a routine, subprogram, subroutine, method, or procedure. Technically, these terms all have different definitions, and the nomenclature varies from language to language. The generic umbrella term ''callable unit'' is sometimes used. A function is often coded so that it can be started several times and from several places during one execution of the program, including from other functions, and then branch back (''return'') to the next instruction after the ''call'', once the function's task is done. The idea of a subroutine was initially conceived by John Mauchly during his work on ENIAC, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pascal (programming Language)
Pascal is an imperative and procedural programming language, designed by Niklaus Wirth as a small, efficient language intended to encourage good programming practices using structured programming and data structuring. It is named in honour of the French mathematician, philosopher and physicist Blaise Pascal. Pascal was developed on the pattern of the ALGOL 60 language. Wirth was involved in the process to improve the language as part of the ALGOL X efforts and proposed a version named ALGOL W. This was not accepted, and the ALGOL X process bogged down. In 1968, Wirth decided to abandon the ALGOL X process and further improve ALGOL W, releasing this as Pascal in 1970. On top of ALGOL's scalars and arrays, Pascal enables defining complex datatypes and building dynamic and recursive data structures such as lists, trees and graphs. Pascal has strong typing on all objects, which means that one type of data cannot be converted to or interpreted as another without explicit conversi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Evaluation Strategy
In a programming language, an evaluation strategy is a set of rules for evaluating expressions. The term is often used to refer to the more specific notion of a ''parameter-passing strategy'' that defines the kind of value that is passed to the function for each parameter (the ''binding strategy'') and whether to evaluate the parameters of a function call, and if so in what order (the ''evaluation order''). The notion of reduction strategy is distinct, although some authors conflate the two terms and the definition of each term is not widely agreed upon. To illustrate, executing a function call f(a,b) may first evaluate the arguments a and b, store the results in references or memory locations ref_a and ref_b, then evaluate the function's body with those references passed in. This gives the function the ability to look up the argument values, to modify them via assignment as if they were local variables, and to return values via the references. This is the call-by-reference evalua ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |