HOME
*



picture info

Semi-invariant Of A Quiver
In mathematics, given a Quiver (mathematics), quiver Q with set of vertices Q0 and set of arrows Q1, a representation (mathematics), representation of Q assigns a vector space ''V''''i'' to each vertex and a linear map ''V''(''α''): ''V''(''s''(''α'')) → ''V''(''t''(''α'')) to each arrow ''α'', where ''s''(''α''), ''t''(''α'') are, respectively, the starting and the ending vertices of α. Given an element d ∈ \mathbbQ0, the set of representations of Q with dim ''V''''i'' = d(i) for each ''i'' has a vector space structure. It is naturally endowed with an action of the algebraic group Πi∈Q0 GL(d(''i'')) by simultaneous base change. Such action induces one on the ring of functions. The ones which are invariants up to a character of the group are called semi-invariants. They form a ring whose structure reflects representation-theoretical properties of the Quiver (mathematics), quiver. Definitions Let Q = (Q0,Q1,''s'',''t'') be a Quiver (mathematics), quiver. Consid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quiver (mathematics)
In graph theory, a quiver is a directed graph where Loop (graph theory), loops and multiple arrows between two vertex (graph theory), vertices are allowed, i.e. a multidigraph. They are commonly used in representation theory: a representation  of a quiver assigns a vector space  to each vertex  of the quiver and a linear map  to each arrow . In category theory, a quiver can be understood to be the underlying structure of a category (mathematics), category, but without composition or a designation of identity morphisms. That is, there is a forgetful functor from to . Its left adjoint is a free functor which, from a quiver, makes the corresponding free category. Definition A quiver Γ consists of: * The set ''V'' of vertices of Γ * The set ''E'' of edges of Γ * Two functions: ''s'': ''E'' → ''V'' giving the ''start'' or ''source'' of the edge, and another function, ''t'': ''E'' → ''V'' giving the ''target'' of the edge. This definition is identica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Representation (mathematics)
In mathematics, a representation is a very general relationship that expresses similarities (or equivalences) between mathematical objects or structures. Roughly speaking, a collection ''Y'' of mathematical objects may be said to ''represent'' another collection ''X'' of objects, provided that the properties and relationships existing among the representing objects ''yi'' conform, in some consistent way, to those existing among the corresponding represented objects ''xi''. More specifically, given a set ''Π'' of properties and relations, a ''Π''-representation of some structure ''X'' is a structure ''Y'' that is the image of ''X'' under a homomorphism that preserves ''Π''. The label ''representation'' is sometimes also applied to the homomorphism itself (such as group homomorphism in group theory). Representation theory Perhaps the most well-developed example of this general notion is the subfield of abstract algebra called representation theory, which studies the representing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties. An important class of algebraic groups is given by the affine algebraic groups, those whose underlying algebraic variety is an affine variety; they are exactly the algebraic subgroups of the general linear group, and are therefore also called ''linear algebraic groups''. Another class is formed by the abelian varieties, which are the algebraic groups whose underlying variety is a projective variety. Chevalley's structure theorem states ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynkin Diagram
In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram (such as whether it contains multiple edges, or its symmetries) correspond to important features of the associated Lie algebra. The term "Dynkin diagram" can be ambiguous. In some cases, Dynkin diagrams are assumed to be directed, in which case they correspond to root systems and semi-simple Lie algebras, while in other cases they are assumed to be undirected, in which case they correspond to Weyl groups. In this article, "Dynkin diagram" means ''directed'' Dynkin diagram, and ''undirected'' Dynkin diagrams will be explicitly so named. Classification of semisimple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prehomogeneous Vector Space
In mathematics, a prehomogeneous vector space (PVS) is a finite-dimensional vector space ''V'' together with a subgroup ''G'' of the general linear group GL(''V'') such that ''G'' has an open dense orbit in ''V''. Prehomogeneous vector spaces were introduced by Mikio Sato in 1970 and have many applications in geometry, number theory and analysis, as well as representation theory. The irreducible PVS were classified by Sato and Tatsuo Kimura in 1977, up to a transformation known as "castling". They are subdivided into two types, according to whether the semisimple part of ''G'' acts prehomogeneously or not. If it doesn't then there is a homogeneous polynomial on ''V'' which is invariant under the semisimple part of ''G''. Setting In the setting of Sato, ''G'' is an algebraic group and ''V'' is a rational representation of ''G'' which has a (nonempty) open orbit in the Zariski topology. However, PVS can also be studied from the point of view of Lie theory: for instance, in Knapp (200 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Directed Graphs
Director may refer to: Literature * ''Director'' (magazine), a British magazine * ''The Director'' (novel), a 1971 novel by Henry Denker * ''The Director'' (play), a 2000 play by Nancy Hasty Music * Director (band), an Irish rock band * ''Director'' (Avant album) (2006) * ''Director'' (Yonatan Gat album) Occupations and positions Arts and design * Animation director * Artistic director * Creative director * Design director * Film director * Music director * Music video director * Sports director * Television director * Theatre director Positions in other fields * Director (business), a senior level management position * Director (colonial), head of chartered company's colonial administration in a territory * Director (education), head of a university or other educational body * Company director * Cruise director * Executive director * Finance director or chief financial officer * Funeral director * Managing director * Non-executive director * Technical director * Tourname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invariant Theory
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are ''invariant'', under the transformations from a given linear group. For example, if we consider the action of the special linear group ''SLn'' on the space of ''n'' by ''n'' matrices by left multiplication, then the determinant is an invariant of this action because the determinant of ''A X'' equals the determinant of ''X'', when ''A'' is in ''SLn''. Introduction Let G be a group, and V a finite-dimensional vector space over a field k (which in classical invariant theory was usually assumed to be the complex numbers). A representation of G in V is a group homomorphism \pi:G \to GL(V), which induces a group action of G on V. If k /math> is the space of polynomial functions on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]