HOME





Selection (relational Algebra)
In relational algebra, a selection (sometimes called a restriction in reference to E.F. Codd's 1970 paper and ''not'', contrary to a popular belief, to avoid confusion with SQL's use of SELECT, since Codd's article predates the existence of SQL) is a unary operation that denotes a subset of a relation. A selection is written as \sigma_( R ) or \sigma_( R ) where: * and are attribute names * is a binary operation in the set \ * is a value constant * is a relation The selection \sigma_( R ) denotes all tuples in for which holds between the and the attribute. The selection \sigma_( R ) denotes all tuples in for which holds between the attribute and the value . For an example, consider the following tables where the first table gives the relation , the second table gives the result of \sigma_( \text ) and the third table gives the result of \sigma_( \text ). More formally the semantics of the selection is defined as follows: : \sigma_( R ) = \ : \sigma_( R ) = \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relational Algebra
In database theory, relational algebra is a theory that uses algebraic structures for modeling data and defining queries on it with well founded semantics (computer science), semantics. The theory was introduced by Edgar F. Codd. The main application of relational algebra is to provide a theoretical foundation for relational databases, particularly query languages for such databases, chief among which is SQL. Relational databases store tabular data represented as relation (database), relations. Queries over relational databases often likewise return tabular data represented as relations. The main purpose of relational algebra is to define Operator (mathematics), operators that transform one or more input relations to an output relation. Given that these operators accept relations as input and produce relations as output, they can be combined and used to express complex queries that transform multiple input relations (whose data are stored in the database) into a single output rela ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Disjunction
In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula S \lor W , assuming that S abbreviates "it is sunny" and W abbreviates "it is warm". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Update (SQL)
An SQL UPDATE statement changes the data of one or more records in a table. Either all the rows can be updated, or a subset may be chosen using a condition. The UPDATE statement has the following form: :UPDATE ''table_name'' SET ''column_name'' = ''value'' ''column_name'' = ''value ...'' ''WHERE ''condition'' For the UPDATE to be successful, the user must have data manipulation privileges (UPDATE privilege) on the table or column and the updated value must not conflict with all the applicable constraints (such as primary keys, unique indexes, CHECK constraints, and NOT NULL constraints). In some databases, such as PostgreSQL, when a FROM clause is present, what essentially happens is that the target table is joined to the tables mentioned in the fromlist, and each output row of the join represents an update operation for the target table. When using FROM, one should ensure that the join produces at most one output row for each row to be modified. In other words, a targ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Select (SQL)
The SQL SELECT statement returns a result set of rows, from one or more tables. A SELECT statement retrieves zero or more rows from one or more database tables or database views. In most applications, SELECT is the most commonly used data manipulation language (DML) command. As SQL is a declarative programming language, SELECT queries specify a result set, but do not specify how to calculate it. The database translates the query into a " query plan" which may vary between executions, database versions and database software. This functionality is called the " query optimizer" as it is responsible for finding the best possible execution plan for the query, within applicable constraints. The SELECT statement has many optional clauses: * SELECT list is the list of columns or SQL expressions to be returned by the query. This is approximately the relational algebra projection operation. * AS optionally provides an alias for each column or expression in the SELECT list. Thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Truth-value
In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values ('' true'' or '' false''). Truth values are used in computing as well as various types of logic. Computing In some programming languages, any expression can be evaluated in a context that expects a Boolean data type. Typically (though this varies by programming language) expressions like the number zero, the empty string, empty lists, and null are treated as false, and strings with content (like "abc"), other numbers, and objects evaluate to true. Sometimes these classes of expressions are called falsy and truthy. For example, in Lisp, nil, the empty list, is treated as false, and all other values are treated as true. In C, the number 0 or 0.0 is false, and all other values are treated as true. In JavaScript, the empty string (""), null, undefined, NaN, +0, −0 and false are somet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Header (Relational Model)
Header may refer to: Computers and engineering * Header (computing), supplemental data at the beginning of a data block ** E-mail header ** HTTP header * Header file, a text file used in computer programming (especially in C and C++) * A pin header is a mainly male style of electrical connector on printed circuit boards, including motherboards, providing links to external devices * Exhaust manifold, in automotive design Construction * Lintels (headers), structural members in light-frame construction which run perpendicular to floor and ceiling joists, "heading" them off to create an opening * Lintel (architecture), a structural member in post-and-lintel building construction * Header (brickwork), a brick laid with its short side exposed * In piping, a manifold or length of pipe that connects multiple smaller pipes Sports * Header (sailing): a term used in sailboat racing to denote a wind shift * Header, a herding dog with a specific method of interacting with its flock * He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Property (philosophy)
In logic and philosophy (especially metaphysics), a property is a characteristic of an object; for example, a red object is said to have the property of redness. The property may be considered a form of object in its own right, able to possess other properties. A property, however, differs from individual objects in that it may be instantiated, and often in more than one object. It differs from the logical and mathematical concept of class by not having any concept of extensionality, and from the philosophical concept of class in that a property is considered to be distinct from the objects which possess it. Understanding how different individual entities (or particulars) can in some sense have some of the same properties is the basis of the problem of universals. Terms and usage A property is any member of a class of entities that are capable of being attributed to objects. Terms similar to ''property'' include ''predicable'', ''attribute'', ''quality'', ''feature'', ''chara ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Negation
In logic, negation, also called the logical not or logical complement, is an operation (mathematics), operation that takes a Proposition (mathematics), proposition P to another proposition "not P", written \neg P, \mathord P, P^\prime or \overline. It is interpreted intuitively as being true when P is false, and false when P is true. For example, if P is "Spot runs", then "not P" is "Spot does not run". An operand of a negation is called a ''negand'' or ''negatum''. Negation is a unary operation, unary logical connective. It may furthermore be applied not only to propositions, but also to notion (philosophy), notions, truth values, or interpretation (logic), semantic values more generally. In classical logic, negation is normally identified with the truth function that takes ''truth'' to ''falsity'' (and vice versa). In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition P is the proposition whose proofs are the re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Conjunction
In logic, mathematics and linguistics, ''and'' (\wedge) is the Truth function, truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or \times or \cdot in which \wedge is the most modern and widely used. The ''and'' of a set of operands is true if and only if ''all'' of its operands are true, i.e., A \land B is true if and only if A is true and B is true. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English language, English "Conjunction (grammar), and"; * In programming languages, the Short-circuit evaluation, short-circuit and Control flow, control structure; * In set theory, Intersection (set theory), intersection. * In Lattice (order), lattice theory, logical conjunction (Infimum and supremum, greatest lower bound). Notati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Communications Of The ACM
''Communications of the ACM'' (''CACM'') is the monthly journal of the Association for Computing Machinery (ACM). History It was established in 1958, with Saul Rosen as its first managing editor. It is sent to all ACM members. Articles are intended for readers with backgrounds in all areas of computer science and information systems. The focus is on the practical implications of advances in information technology and associated management issues; ACM also publishes a variety of more theoretical journals. The magazine straddles the boundary of a science magazine, trade magazine, and a scientific journal. While the content is subject to peer review, the articles published are often summaries of research that may also be published elsewhere. Material published must be accessible and relevant to a broad readership. From 1960 onward, ''CACM'' also published algorithms, expressed in ALGOL. The collection of algorithms later became known as the Collected Algorithms of the ACM. CA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atomic Formula
In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformulas. Atoms are thus the simplest well-formed formulas of the logic. Compound formulas are formed by combining the atomic formulas using the logical connectives. The precise form of atomic formulas depends on the logic under consideration; for propositional logic, for example, a propositional variable is often more briefly referred to as an "atomic formula", but, more precisely, a propositional variable is not an atomic formula but a formal expression that denotes an atomic formula. For predicate logic, the atoms are predicate symbols together with their arguments, each argument being a first-order logic#Formation rules, term. In model theory, atomic formulas are merely string (computer science), strings of symbols with a given signature ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Propositional Formula
In propositional logic, a propositional formula is a type of syntactic formula which is well formed. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula. A propositional formula is constructed from simple propositions, such as "five is greater than three" or propositional variables such as ''p'' and ''q'', using connectives or logical operators such as NOT, AND, OR, or IMPLIES; for example: : (''p'' AND NOT ''q'') IMPLIES (''p'' OR ''q''). In mathematics, a propositional formula is often more briefly referred to as a "proposition", but, more precisely, a propositional formula is not a proposition but a formal expression that ''denotes'' a proposition, a formal object under discussion, just like an expression such as "" is not a value, but denotes a value. In some contexts, maintaining the distinction may be of importanc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]