Seesaw Mechanism
In the theory of grand unification of particle physics, and, in particular, in theories of neutrino masses and neutrino oscillation, the seesaw mechanism is a generic model used to understand the relative sizes of observed neutrino masses, of the order of eV, compared to those of quarks and charged leptons, which are millions of times heavier. The name of the seesaw mechanism was given by Tsutomu Yanagida in a Tokyo conference in 1981. There are several types of models, each extending the Standard Model. The simplest version, "Type 1," extends the Standard Model by assuming two or more additional right-handed neutrino fields inert under the electroweak interaction, and the existence of a very large mass scale. This allows the mass scale to be identifiable with the postulated scale of grand unification. Type 1 seesaw This model produces a light neutrino, for each of the three known neutrino flavors, and a corresponding very heavy neutrino for each flavor, which has yet to be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grand Unified Theory
A Grand Unified Theory (GUT) is a model in particle physics in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this unified force has not been directly observed, many GUT models theorize its existence. If unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct. Experiments have confirmed that at high energy the electromagnetic interaction and weak interaction unify into a single electroweak interaction. GUT models predict that at even higher energy, the strong interaction and the electroweak interaction will unify into a single electronuclear interaction. This interaction is characterized by one larger gauge symmetry and thus several force carriers, but one unified coupling constant. Unifying ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dirac Spinor
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group. Dirac spinors are important and interesting in numerous ways. Foremost, they are important as they do describe all of the known fundamental particle fermions in nature; this includes the electron and the quarks. Algebraically they behave, in a certain sense, as the "square root" of a vector. This is not readily apparent from direct examination, but it has slowly become clear over the last 60 years that spinorial representations are fundamental to geometry. For example, effectively all Riemannian manifolds can have spinors and spin connections built upon them, via the Clifford algebra. The Dirac spinor is specific to that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - bi. The complex conjugate of z is often denoted as \overline or z^*. In polar form, the conjugate of r e^ is r e^. This can be shown using Euler's formula. The product of a complex number and its conjugate is a real number: a^2 + b^2 (or r^2 in polar coordinates). If a root of a univariate polynomial with real coefficients is complex, then its complex conjugate is also a root. Notation The complex conjugate of a complex number z is written as \overline z or z^*. The first notation, a vinculum, avoids confusion with the notation for the conjugate transpose of a matrix, which can be thought of as a generalization of the complex conjugate. The second is preferred in physics, where dagger (†) is used for the conjugate tra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lorentz Covariance
In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space". Lorentz covariance, a related concept, is a property of the underlying spacetime manifold. Lorentz covariance has two distinct, but closely related meanings: # A physical quantity is said to be Lorentz covariant if it transforms under a given representation of the Lorentz group. According to the representation theory of the Lorentz group, these quantities are built out of scalars, four-vectors, four-tensors, and spinors. In particular, a Lorentz covariant scalar (e.g., the spa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sterile Neutrino
Sterile neutrinos (or inert neutrinos) are hypothetical particles (neutral leptons – neutrinos) that are believed to interact only via gravity and not via any of the other fundamental interactions of the Standard Model. The term ''sterile neutrino'' is used to distinguish them from the known, ordinary ''active neutrinos'' in the Standard Model, which carry an isospin charge of and engage in the weak interaction. The term typically refers to neutrinos with right-handed chirality (see right-handed neutrino), which may be inserted into the Standard Model. Particles that possess the quantum numbers of sterile neutrinos and masses great enough such that they do not interfere with the current theory of Big Bang Nucleosynthesis are often called neutral heavy leptons (NHLs) or heavy neutral leptons (HNLs). The existence of right-handed neutrinos is theoretically well-motivated, because the known active neutrinos are left-handed and all other known fermions have been observed with both ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weak Isospin
In particle physics, weak isospin is a quantum number relating to the weak interaction, and parallels the idea of isospin under the strong interaction. Weak isospin is usually given the symbol or , with the third component written as or . It can be understood as the eigenvalue of a charge operator. is more important than and typically the term "weak isospin" may refer to the "3rd component of weak isospin". The weak isospin conservation law relates to the conservation of T_3; weak interactions conserve . It is also conserved by the electromagnetic and strong interactions. However, interaction with the Higgs field does ''not'' conserve , as directly seen by propagation of fermions, mixing chiralities by dint of their mass terms resulting from their Higgs couplings. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time even in vacuum. Interaction with the Higgs field changes particles' weak isospin (and weak hypercharge). ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Singlet State
In quantum mechanics, a singlet state usually refers to a system in which all electrons are paired. The term 'singlet' originally meant a linked set of particles whose net angular momentum is zero, that is, whose overall spin quantum number s=0. As a result, there is only one spectral line of a singlet state. In contrast, a doublet state contains one unpaired electron and shows splitting of spectral lines into a doublet; and a triplet state has two unpaired electrons and shows threefold splitting of spectral lines. History Singlets and the related spin concepts of doublets and triplets occur frequently in atomic physics and nuclear physics, where one often needs to determine the total spin of a collection of particles. Since the only observed fundamental particle with zero spin is the extremely inaccessible Higgs boson, singlets in everyday physics are necessarily composed of sets of particles whose individual spins are non-zero, e.g. or 1. The origin of the term "singlet" is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Doublet State
In quantum mechanics, a doublet is a composite quantum state of a system with an effective spin of 1/2, such that there are two allowed values of the spin component, −1/2 and +1/2. Quantum systems with two possible states are sometimes called two-level systems. Essentially all occurrences of doublets in nature arise from rotational symmetry; spin 1/2 is associated with the fundamental representation of the Lie group SU(2). History and applications The term "doublet" dates back to the 19th century, when it was observed that certain spectral lines of an ionized, excited gas would split into two under the influence of a strong magnetic field, in an effect known as the anomalous Zeeman effect. Such spectral lines were observed not only in the laboratory, but also in astronomical spectroscopy observations, allowing astronomers to deduce the existence of, and measure the strength of magnetic fields around the sun, stars and galaxies. Conversely, it was the observation of doublets in s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weak Isospin
In particle physics, weak isospin is a quantum number relating to the weak interaction, and parallels the idea of isospin under the strong interaction. Weak isospin is usually given the symbol or , with the third component written as or . It can be understood as the eigenvalue of a charge operator. is more important than and typically the term "weak isospin" may refer to the "3rd component of weak isospin". The weak isospin conservation law relates to the conservation of T_3; weak interactions conserve . It is also conserved by the electromagnetic and strong interactions. However, interaction with the Higgs field does ''not'' conserve , as directly seen by propagation of fermions, mixing chiralities by dint of their mass terms resulting from their Higgs couplings. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time even in vacuum. Interaction with the Higgs field changes particles' weak isospin (and weak hypercharge). ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chirality (physics)
A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Chirality and helicity The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion. It is negative (“left-handed”) if the directions of spin and motion are opposite. So a standard clock, with its spin vector defined by the rotation of its hands, has left-handed helicity if tossed with its face directed forwards. Mathematically, ''helicity'' is the sign of the projection of the spin vector onto the momentum vector: “left” is negative, “right” is positive. The chira ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weyl Spinor
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions. None of the elementary particles in the Standard Model are Weyl fermions. Previous to the confirmation of the neutrino oscillations, it was considered possible that the neutrino might be a Weyl fermion (it is now expected to be either a Dirac or a Majorana fermion). In condensed matter physics, some materials can display quasiparticles that behave as Weyl fermions, leading to the notion of Weyl semimetals. Mathematically, any Dirac fermion can be decomposed as two Weyl fermions of opposite chirality coupled by the mass term. History The Dirac equation, was published in 1928 by Paul Dirac, first describing spin-½ particles in the framework ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Action (physics)
In physics, action is a scalar quantity describing how a physical system has dynamics (physics), changed over time. Action is significant because the equations of motion of the system can be derived through the principle of stationary action. In the simple case of a single particle moving with a constant velocity (uniform linear motion), the action is the momentum of the particle times the distance it moves, integral (mathematics), added up along its path; equivalently, action is twice the particle's kinetic energy times the duration for which it has that amount of energy. For more complicated systems, all such quantities are combined. More formally, action is a functional (mathematics), mathematical functional which takes the trajectory (also called path or history) of the system as its argument and has a real number as its result. Generally, the action takes different values for different paths. Action has dimensional analysis, dimensions of energy × time or momentu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |