Search Game
   HOME
*





Search Game
A search game is a two-person zero-sum game which takes place in a set called the search space. The searcher can choose any continuous trajectory subject to a maximal velocity constraint. It is always assumed that neither the searcher nor the hider has any knowledge about the movement of the other player until their distance apart is less than or equal to the discovery radius and at this very moment capture occurs. As mathematical models, search games can be applied to areas such as hide-and-seek games that children play or representations of some tactical military situations. The area of search games was introduced in the last chapter of Rufus Isaacs' classic book "Differential Games" and has been developed further by Shmuel GalS. Gal, ''Search Games'', Academic Press, New York (1980)S. Alpern and S. Gal, The Theory of Search Games and Rendezvous', Springer (2003). and Steve Alpern. The princess and monster game deals with a moving target. Strategy A natural strategy to search fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zero-sum Game
Zero-sum game is a mathematical representation in game theory and economic theory of a situation which involves two sides, where the result is an advantage for one side and an equivalent loss for the other. In other words, player one's gain is equivalent to player two's loss, therefore the net improvement in benefit of the game is zero. If the total gains of the participants are added up, and the total losses are subtracted, they will sum to zero. Thus, cutting a cake, where taking a more significant piece reduces the amount of cake available for others as much as it increases the amount available for that taker, is a zero-sum game if all participants value each unit of cake equally. Other examples of zero-sum games in daily life include games like poker, chess, and bridge where one person gains and another person loses, which results in a zero-net benefit for every player. In the markets and financial instruments, futures contracts and options are zero-sum games as well. In c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rufus Isaacs (game Theorist)
Rufus Philip Isaacs (June 11, 1914 – January 18, 1981) was a game theorist especially prominent in the 1950s and 1960s with his work on differential games. Biography Isaacs was born on 11 June 1914 in New York City. He worked for the RAND Corporation from 1948 until winter 1954/1955. His investigation stemmed from classic pursuit–evasion type zero-sum dynamic two-player games such as the Princess and monster game. In 1942, he married Rose Bicov, and they had two daughters. His work in pure mathematics included working with monodiffric functions, fractional-order mappings, graph theory, analytic functions, and number theory. In graph theory he constructed the first two infinite families of snarks. In applied mathematics, he worked with aerodynamics, elasticity, optimization, and differential games, which he is most known for. He received his bachelor's degree from MIT in 1936, and received his MA and PhD from Columbia University in 1942 and 1943 respectively. His first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shmuel Gal
Shmuel Gal ( he, שמואל גל, born 1940) is a mathematician and professor of statistics at the University of Haifa in Israel. He devised the Gal's accurate tables method for the computer evaluation of elementary functions. With Zvi Yehudai he developed in 1993 a new algorithm for Sorting algorithm, sorting which is used by IBM. Gal has solved the Princess and monster game and made several significant contributions to the area of search games. He has been working on rendezvous problems with his collaborative colleagues Steve Alpern, Vic Baston, and John Howard.S. Gal and J. Howard (2005). Rendezvous-evasion search in two boxes, OPERATIONS RESEARCH. Gal received a Ph.D. in mathematics from the Hebrew University of Jerusalem. His thesis advisor was Aryeh Dvoretzky. References External linksProf. Shmuel Gal - Home page
{{DEFAULTSORT:Gal, Shmuel Game theorists Hebrew University of Jerusalem alumni Israeli mathematicians Israeli operations researchers University of Haifa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steve Alpern
Professor Steve Alpern is a professor of Operational Research at the University of Warwick, where he recently moved after working for many years at the London School of Economics. His early work was mainly in the area of dynamical systems and ergodic theory, but his more recent research has been concentrated in the fields of search games and rendezvous problem, rendezvous. He informally introduced the rendezvous problem as early as 1976.Steve Alpern (1976). ''Hide and Seek Games''. Seminar, Institut fur Hohere Studien, Wien, 26 July His collaborators include Shmuel Gal, Vic Baston and Robbert Fokkink. External links Author profilein the database Zentralblatt MATH, zbMATH References

Academics of the University of Warwick Game theorists Living people Courant Institute of Mathematical Sciences alumni Princeton University alumni Year of birth missing (living people) {{UK-academic-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Princess And Monster Game
In game theory, a princess and monster game is a pursuit–evasion game played by two players in a region. Formal Definition In his book ''Differential Games'' (1965), Rufus Isaacs defined the game as: This game remained a well-known open problem until it was solved by Shmuel Gal in the late 1970s. His optimal strategy for the princess is to move to a random location in the room and stay still for a time interval which is neither too short nor too long, before going to another (independent) random location and repeating the procedure. The proposed optimal search strategy for the monster is based on subdividing the room into many narrow rectangles, picking a rectangle at random and searching it in some specific way, after some time picking another rectangle randomly and independently, and so on. Princess and monster games can be played on a pre-selected graph. It can be demonstrated that for any finite graph an optimal mixed search strategy exists that results in a finite p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chinese Postman
In graph theory, a branch of mathematics and computer science, Guan's route problem, the Chinese postman problem, postman tour or route inspection problem is to find a shortest closed path or circuit that visits every edge of an (connected) undirected graph. When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate (or the subset of edges with the minimum possible total weight) so that the resulting multigraph does have an Eulerian circuit. It can be solved in polynomial time. The problem was originally studied by the Chinese mathematician Kwan Mei-Ko in 1960, whose Chinese paper was translated into English in 1962. The original name "Chinese postman problem" was coined in his honor; different sources credit the coinage either to Alan J. Goldman or Jack Edmonds, both of whom were at the U.S. National Bureau of Standards at t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eulerian Path
In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this: :Given the graph in the image, is it possible to construct a path (or a cycle; i.e., a path starting and ending on the same vertex) that visits each edge exactly once? Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in the graph have an even degree, and stated without proof that connected graphs with all vertices of even degree have an Eulerian circuit. The first complete proof of this latter claim was published posthumously in 1873 by Carl Hierholzer. This is known as Euler's Theorem: :A connected gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Online Algorithm
In computer science, an online algorithm is one that can process its input piece-by-piece in a serial fashion, i.e., in the order that the input is fed to the algorithm, without having the entire input available from the start. In contrast, an offline algorithm is given the whole problem data from the beginning and is required to output an answer which solves the problem at hand. In operations research, the area in which online algorithms are developed is called online optimization. As an example, consider the sorting algorithms selection sort and insertion sort: selection sort repeatedly selects the minimum element from the unsorted remainder and places it at the front, which requires access to the entire input; it is thus an offline algorithm. On the other hand, insertion sort considers one input element per iteration and produces a partial solution without considering future elements. Thus insertion sort is an online algorithm. Note that the final result of an insertion sort ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loss Function
In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event. An optimization problem seeks to minimize a loss function. An objective function is either a loss function or its opposite (in specific domains, variously called a reward function, a profit function, a utility function, a fitness function, etc.), in which case it is to be maximized. The loss function could include terms from several levels of the hierarchy. In statistics, typically a loss function is used for parameter estimation, and the event in question is some function of the difference between estimated and true values for an instance of data. The concept, as old as Laplace, was reintroduced in statistics by Abraham Wald in the middle of the 20th century. In the context of economics, for example, this i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Competitive Analysis (online Algorithm)
Competitive analysis is a method invented for analyzing online algorithms, in which the performance of an online algorithm (which must satisfy an unpredictable sequence of requests, completing each request without being able to see the future) is compared to the performance of an optimal ''offline algorithm'' that can view the sequence of requests in advance. An algorithm is ''competitive'' if its ''competitive ratio''—the ratio between its performance and the offline algorithm's performance—is bounded. Unlike traditional worst-case analysis, where the performance of an algorithm is measured only for "hard" inputs, competitive analysis requires that an algorithm perform well both on hard and easy inputs, where "hard" and "easy" are defined by the performance of the optimal offline algorithm. For many algorithms, performance is dependent not only on the size of the inputs, but also on their values. For example, sorting an array of elements varies in difficulty depending on the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minimax
Minimax (sometimes MinMax, MM or saddle point) is a decision rule used in artificial intelligence, decision theory, game theory, statistics, and philosophy for ''mini''mizing the possible loss for a worst case (''max''imum loss) scenario. When dealing with gains, it is referred to as "maximin" – to maximize the minimum gain. Originally formulated for several-player zero-sum game theory, covering both the cases where players take alternate moves and those where they make simultaneous moves, it has also been extended to more complex games and to general decision-making in the presence of uncertainty. Game theory In general games The maximin value is the highest value that the player can be sure to get without knowing the actions of the other players; equivalently, it is the lowest value the other players can force the player to receive when they know the player's action. Its formal definition is: :\underline = \max_ \min_ Where: * is the index of the player of interest. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]