HOME
*



picture info

Schröder–Bernstein Property
A Schröder–Bernstein property is any mathematical property that matches the following pattern : If, for some mathematical objects ''X'' and ''Y'', both ''X'' is similar to a part of ''Y'' and ''Y'' is similar to a part of ''X'' then ''X'' and ''Y'' are similar (to each other). The name Schröder–Bernstein (or Cantor–Schröder–Bernstein, or Cantor–Bernstein) property is in analogy to the theorem of the same name (from set theory). Schröder–Bernstein properties In order to define a specific Schröder–Bernstein property one should decide * what kind of mathematical objects are ''X'' and ''Y'', * what is meant by "a part", * what is meant by "similar". In the classical (Cantor–)Schröder–Bernstein theorem, * objects are sets (maybe infinite), * "a part" is interpreted as a subset, * "similar" is interpreted as equinumerous. Not all statements of this form are true. For example, assume that * objects are triangles, * "a part" means a triangle inside the given t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Relation
In mathematics, a relation on a set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Each partial order as well as each equivalence relation needs to be transitive. Definition A homogeneous relation on the set is a ''transitive relation'' if, :for all , if and , then . Or in terms of first-order logic: :\forall a,b,c \in X: (aRb \wedge bRc) \Rightarrow aRc, where is the infix notation for . Examples As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy, too, is an ancestor of Carrie. On the other hand, "is the birth parent of" is not a transitive relation, because if Alice is the birth parent of Brenda, and Brenda is the birth parent of Claire, then this does not imply that Alice is the birth parent of Claire. What is more, it is antitransitive: Alice can ''never'' be the birth parent of Claire. "Is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutative Von Neumann Algebras
In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra. Von Neumann algebras were originally introduced by John von Neumann, motivated by his study of single operators, group representations, ergodic theory and quantum mechanics. His double commutant theorem shows that the analytic definition is equivalent to a purely algebraic definition as an algebra of symmetries. Two basic examples of von Neumann algebras are as follows: *The ring L^\infty(\mathbb R) of essentially bounded measurable functions on the real line is a commutative von Neumann algebra, whose elements act as multiplication operators by pointwise multiplication on the Hilbert space L^2(\mathbb R) of square-integrable functions. *The algebra \mathcal B(\mathcal H) of all bounded operators on a Hilbert space \mathcal H is a von Neumann algebra, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Space (mathematics)
In mathematics, a space is a set (sometimes called a universe) with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself. A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can be elements of a set, functions on another space, or subspaces of another space. It is the relationships that define the nature of the space. More precisely, isomorphic spaces are considered identical, where an isomorphism between two spaces is a one-to-one correspondence between their points that preserves the relationships. For example, the relationships between the points of a three-dimensional Euclidean space are uniquely determined by Euclid's axioms, and all three-dimensional Euclidean spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term "Fréchet space." Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete norme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Set
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space ''X'', the collection of all Borel sets on ''X'' forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel algebra on ''X'' is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets). Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space. Any measure defined on the Borel sets is called a Borel measure. Borel sets and the associated Borel hierarchy also play a fundamental role in descriptive set theory. In some contexts, Borel sets are defined to be generated by the compact sets of the topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computability Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of subrecursive hierarchies, formal methods, and formal languages. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Myhill Isomorphism Theorem
In computability theory the Myhill isomorphism theorem, named after John Myhill, provides a characterization for two numberings to induce the same notion of computability on a set. Myhill isomorphism theorem Sets ''A'' and ''B'' of natural numbers are said to be recursively isomorphic if there is a total computable if there is a total computable bijective function ''f'' on the natural numbers such that for any x, x\in A\iff f(x)\in B.P. Odifreddi, Classical Recursion Theory: The theory of functions and sets of natural numbers (pp.324--325). Studies in Logic and the Foundations of Mathematics, vol. 125 (1989), Elsevier 0-444-87295-7. A set ''A'' of natural numbers is said to be many-one reduction">one-one reducible to a set ''B'' if there is a total computable injective function ''f'' on the natural numbers such that f(A) \subseteq B and f(\mathbb \setminus A) \subseteq \mathbb \setminus B. Myhill's isomorphism theorem states that two sets ''A'' and ''B'' of natural numbers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schröder–Bernstein Theorem For Operator Algebras
Schröder–Bernstein may refer to: *the Schröder–Bernstein theorem in set theory *Schröder–Bernstein theorem for measurable spaces *Schröder–Bernstein theorems for operator algebras *Schröder–Bernstein property A Schröder–Bernstein property is any mathematical property that matches the following pattern : If, for some mathematical objects ''X'' and ''Y'', both ''X'' is similar to a part of ''Y'' and ''Y'' is similar to a part of ''X'' then ''X'' and ''Y ...
{{DEFAULTSORT:Schroder-Bernstein ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schröder–Bernstein Theorem For Measurable Spaces
The Cantor–Bernstein–Schroeder theorem of set theory has a counterpart for measurable spaces, sometimes called the Borel Schroeder–Bernstein theorem, since measurable spaces are also called Borel spaces. This theorem, whose proof is quite easy, is instrumental when proving that two measurable spaces are isomorphic. The general theory of standard Borel spaces contains very strong results about isomorphic measurable spaces, see Kuratowski's theorem. However, (a) the latter theorem is very difficult to prove, (b) the former theorem is satisfactory in many important cases (see Examples), and (c) the former theorem is used in the proof of the latter theorem. The theorem Let X and Y be measurable spaces. If there exist injective, bimeasurable maps f : X \to Y, g : Y \to X, then X and Y are isomorphic (the Schröder–Bernstein property). Comments The phrase "f is bimeasurable" means that, first, f is measurable (that is, the preimage f^(B) is measurable for every measurable B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Order
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', or ''x'' and ''y'' are ''incompar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]