HOME
*





Schoch Line
In geometry, the Schoch line is a line defined from an arbelos and named by Peter Woo after Thomas Schoch, who had studied it in conjunction with the Schoch circles. Construction An arbelos is a shape bounded by three mutually-tangent semicircular arcs with collinear endpoints, with the two smaller arcs nested inside the larger one; let the endpoints of these three arcs be (in order along the line containing them) ''A'', ''B'', and ''C''. Let ''K''1 and ''K''2 be two more arcs, centered at ''A'' and ''C'', respectively, with radii ''AB'' and ''CB'', so that these two arcs are tangent at ''B''; let ''K''3 be the largest of the three arcs of the arbelos. A circle, with the center ''A''1, is then created tangent to the arcs ''K''1, ''K''2, and ''K''3. This circle is congruent with Archimedes' twin circles, making it an Archimedean circle; it is one of the Schoch circles. The Schoch line is perpendicular In elementary geometry, two geometric objects are perpendicular if the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schoch Line
In geometry, the Schoch line is a line defined from an arbelos and named by Peter Woo after Thomas Schoch, who had studied it in conjunction with the Schoch circles. Construction An arbelos is a shape bounded by three mutually-tangent semicircular arcs with collinear endpoints, with the two smaller arcs nested inside the larger one; let the endpoints of these three arcs be (in order along the line containing them) ''A'', ''B'', and ''C''. Let ''K''1 and ''K''2 be two more arcs, centered at ''A'' and ''C'', respectively, with radii ''AB'' and ''CB'', so that these two arcs are tangent at ''B''; let ''K''3 be the largest of the three arcs of the arbelos. A circle, with the center ''A''1, is then created tangent to the arcs ''K''1, ''K''2, and ''K''3. This circle is congruent with Archimedes' twin circles, making it an Archimedean circle; it is one of the Schoch circles. The Schoch line is perpendicular In elementary geometry, two geometric objects are perpendicular if the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line (geometry)
In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segment in everyday life, which has two points to denote its ends. Lines can be referred by two points that lay on it (e.g., \overleftrightarrow) or by a single letter (e.g., \ell). Euclid described a line as "breadthless length" which "lies evenly with respect to the points on itself"; he introduced several postulates as basic unprovable properties from which he constructed all of geometry, which is now called Euclidean geometry to avoid confusion with other geometries which have been introduced since the end of the 19th century (such as non-Euclidean, projective and affine geometry). In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in analy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arbelos
In geometry, an arbelos is a plane region bounded by three semicircles with three apexes such that each corner of each semicircle is shared with one of the others (connected), all on the same side of a straight line (the ''baseline'') that contains their diameters. The earliest known reference to this figure is in Archimedes's ''Book of Lemmas'', where some of its mathematical properties are stated as Propositions 4 through 8. The word ''arbelos'' is Greek for 'shoemaker's knife'. The figure is closely related to the Pappus chain. Properties Two of the semicircles are necessarily concave, with arbitrary diameters and ; the third semicircle is Convex curve, convex, with diameter Area The area (geometry), area of the arbelos is equal to the area of a circle with diameter . Proof: For the proof, reflect the arbelos over the line through the points and , and observe that twice the area of the arbelos is what remains when the areas of the two smaller circles (with diameters , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schoch Circles
In geometry, the Schoch circles are twelve Archimedean circles constructed by Thomas Schoch. History In 1979, Thomas Schoch discovered a dozen new Archimedean circles; he sent his discoveries to ''Scientific Americans "Mathematical Games" editor Martin Gardner. The manuscript was forwarded to Leon Bankoff. Bankoff gave a copy of the manuscript to Professor Clayton Dodge of the University of Maine in 1996. The two were planning to write an article about the Arbelos, in which the Schoch circles would be included; however, Bankoff died the year after. In 1998, Peter Y. Woo of Biola University Biola University () is a private, nondenominational, evangelical Christian university in La Mirada, California. It was founded in 1908 as the Bible Institute of Los Angeles. It has over 150 programs of study in nine schools offering bachelor's ... published Schoch's findings on his website. By generalizing two of Schoch's circles, Woo discovered an infinite family of Archimedean circles name ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tangent
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve at a point if the line passes through the point on the curve and has slope , where ''f'' is the derivative of ''f''. A similar definition applies to space curves and curves in ''n''-dimensional Euclidean space. As it passes through the point where the tangent line and the curve meet, called the point of tangency, the tangent line is "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. The tangent line to a point on a differentiable curve can also be thought of as a '' tangent line approximation'', the graph of the affine function that best approximates the original function at the given point. Similarly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedes' Circles
In geometry, the twin circles are two special circles associated with an arbelos. An arbelos is determined by three collinear points , , and , and is the curvilinear triangular region between the three semicircles that have , , and as their diameters. If the arbelos is partitioned into two smaller regions by a line segment through the middle point of , , and , perpendicular to line , then each of the two twin circles lies within one of these two regions, tangent to its two semicircular sides and to the splitting segment. These circles first appeared in the ''Book of Lemmas'', which showed (Proposition V) that the two circles are congruent. Thābit ibn Qurra, who translated this book into Arabic, attributed it to Greek mathematician Archimedes. Based on this claim the twin circles, and several other circles in the Arbelos congruent to them, have also been called Archimedes's circles. However, this attribution has been questioned by later scholarship. Construction Specifically ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedean Circle
In geometry, an Archimedean circle is any circle constructed from an arbelos that has the same radius as each of Archimedes' twin circles. If the arbelos is normed such that the diameter of its outer (largest) half circle has a length of 1 and ''r'' denotes the radiius of any of the inner half circles, then the radius ''ρ'' of such an Archimedean circle is given by :\rho=\fracr\left(1-r\right), There are over fifty different known ways to construct Archimedean circles. Origin An Archimedean circle was first constructed by Archimedes in his ''Book of Lemmas''. In his book, he constructed what is now known as Archimedes' twin circles. Radius If a and b are the radii of the small semicircles of the arbelos, the radius of an Archimedean circle is equal to :R = \frac This radius is thus \frac 1R = \frac 1a + \frac 1b. The Archimedean circle with center C (as in the figure at right) is tangent to the tangents from the centers of the small semicircles to the other small semi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perpendicular
In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can be defined between two lines (or two line segments), between a line and a plane, and between two planes. Perpendicularity is one particular instance of the more general mathematical concept of '' orthogonality''; perpendicularity is the orthogonality of classical geometric objects. Thus, in advanced mathematics, the word "perpendicular" is sometimes used to describe much more complicated geometric orthogonality conditions, such as that between a surface and its '' normal vector''. Definitions A line is said to be perpendicular to another line if the two lines intersect at a right angle. Explicitly, a first line is perpendicular to a second line if (1) the two lines meet; and (2) at the point of intersection the straight angle on one sid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinity
Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions among philosophers. In the 17th century, with the introduction of the infinity symbol and the infinitesimal calculus, mathematicians began to work with infinite series and what some mathematicians (including l'Hôpital and Bernoulli) regarded as infinitely small quantities, but infinity continued to be associated with endless processes. As mathematicians struggled with the foundation of calculus, it remained unclear whether infinity could be considered as a number or magnitude and, if so, how this could be done. At the end of the 19th century, Georg Cantor enlarged the mathematical study of infinity by studying infinite sets and infinite numbers, showing that they can be of various sizes. For example, if a line is viewed as the set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Woo Circles
In geometry, the Woo circles, introduced by Peter Y. Woo, are a set of infinitely many Archimedean circles. Construction Form an arbelos with the two inner semicircles tangent at point ''C''. Let ''m'' denote any nonnegative real number. Draw two circles, with radii ''m'' times the radii of the smaller two arbelos semicircles, centered on the arbelos ground line, also tangent to each other at point ''C'' and with radius ''m'' times the radius of the corresponding small arbelos arc. Any circle centered on the Schoch line and externally tangent to the circles is a Woo circle. See also *Schoch circles In geometry, the Schoch circles are twelve Archimedean circles constructed by Thomas Schoch. History In 1979, Thomas Schoch discovered a dozen new Archimedean circles; he sent his discoveries to ''Scientific Americans "Mathematical Games" editor Ma ... References Arbelos Circles {{Elementary-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arbelos
In geometry, an arbelos is a plane region bounded by three semicircles with three apexes such that each corner of each semicircle is shared with one of the others (connected), all on the same side of a straight line (the ''baseline'') that contains their diameters. The earliest known reference to this figure is in Archimedes's ''Book of Lemmas'', where some of its mathematical properties are stated as Propositions 4 through 8. The word ''arbelos'' is Greek for 'shoemaker's knife'. The figure is closely related to the Pappus chain. Properties Two of the semicircles are necessarily concave, with arbitrary diameters and ; the third semicircle is Convex curve, convex, with diameter Area The area (geometry), area of the arbelos is equal to the area of a circle with diameter . Proof: For the proof, reflect the arbelos over the line through the points and , and observe that twice the area of the arbelos is what remains when the areas of the two smaller circles (with diameters , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]