HOME
*





Schlichting Jet
Schlichting jet is a steady, laminar, round jet, emerging into a stationary fluid of the same kind with very high Reynolds number. The problem was formulated and solved by Hermann Schlichting in 1933, who also formulated the corresponding planar Bickley jet problem in the same paper. The Landau-Squire jet from a point source is an exact solution of Navier-Stokes equations, which is valid for all Reynolds number, reduces to Schlichting jet solution at high Reynolds number, for distances far away from the jet origin. Flow description Consider an axisymmetric jet emerging from an orifice, located at the origin of a cylindrical polar coordinates (r,x), with x being the jet axis and r being the radial distance from the axis of symmetry. Since the jet is in constant pressure, the momentum flux in the x direction is constant and equal to the momentum flux at the origin, :J=2\pi\rho \int_0^\infty ru^2 d r = \text, where \rho is the constant density, (v,u) are the velocity components in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reynolds Number
In fluid mechanics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow ( eddy currents). These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation. The Reynolds number has wide applications, ranging from liquid flow in a pipe to the passage of air over an aircraft wing. It is used to predict the transition from laminar to turbulent flow and is used in the scaling of similar but different-sized flow situations, such as between an aircraft model in a wind tunnel and the full-size ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermann Schlichting
Hermann Schlichting (22 September 1907 – 15 June 1982) was a German fluid dynamics engineer. Life and work Hermann Schlichting studied from 1926 till 1930 mathematics, physics and applied mechanics at the University of Jena, Vienne and Göttingen. In 1930 he wrote his PhD in Göttingen titled ''Über das ebene Windschattenproblem'' and also in the same year passed the state examination as teacher for higher mathematics and physics. His meeting with Ludwig Prandtl had a long-lasting effect on him. He worked from 1931 till 1935 at the Kaiser Wilhelm Institute for Flow Research in Göttingen. His main research area was fluid flows with viscous effects. Simultaneously he also started working on airfoil aerodynamics. In 1935 Schlichting went to Dornier in Friedrichshafen. There he did the planning for the new wind tunnel and after short construction time took charge over it. With it he gained useful experience in the field of aerodynamics. At the age of 30 in 1937 he joined Tec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bickley Jet
In fluid dynamics, Bickley jet is a steady two-dimensional laminar plane jet with large jet Reynolds number emerging into the fluid at rest, named after W. G. Bickley, who gave the analytical solution in 1937, to the problem derived by Schlichting in 1933 and the corresponding problem in axisymmetric coordinates is called as Schlichting jet. The solution is valid only for distances far away from the jet origin. Flow description Consider a steady plane emerging into the same fluid, a type of submerged jets from a narrow slit, which is supposed to be very small (such that the fluid loses memory of the shape and size of the slit far away from the origin, it remembers only the net momentum flux). Let the velocity be (u,v) in Cartesian coordinate and the axis of the jet be x axis with origin at the orifice. The flow is self-similar for large Reynolds number (the jet is so thin that u(x,y) varies much more rapidly in the transverse y direction than the streamwise x direction) and can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boundary Layer
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition (zero velocity at the wall). The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer. The air next to a human is heated resulting in gravity-induced convective airflow, airflow which results in both a velocity and thermal boundary layer. A breeze disrupts the boundary layer, and hair and clothing protect it, making the human feel cooler or warmer. On an aircraft wing, the velocity boundary layer is the part of the flow close to the wing, where viscous forces distort the surrounding non-viscous flow. In the Earth's atmosphere, the atmospheric boun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kinematic Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of the compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schneider Flow
Schneider flow describes the axisymmetric outer flow induced by a laminar or turbulent jet having a large jet Reynolds number or by a laminar plume with a large Grashof number, in the case where the fluid domain is bounded by a wall. When the jet Reynolds number or the plume Grashof number is large, the full flow field constitutes two regions of different extent: a thin boundary-layer flow that may identified as the jet or as the plume and a slowly moving fluid in the large outer region encompassing the jet or the plume. The Schneider flow describing the latter motion is an exact solution of the Navier-Stokes equations, discovered by Wilhelm Schneider in 1981. The solution was discovered also by A. A. Golubinskii and V. V. Sychev in 1979, however, was never applied to flows entrained by jets. The solution is an extension of Taylor's potential flow solutionTaylor, G. (1958). Flow induced by jets. Journal of the Aerospace Sciences, 25(7), 464–465. to arbitrary Reynolds number. Math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flow Regimes
Flow may refer to: Science and technology * Fluid flow, the motion of a gas or liquid * Flow (geomorphology), a type of mass wasting or slope movement in geomorphology * Flow (mathematics), a group action of the real numbers on a set * Flow (psychology), a mental state of being fully immersed and focused * Flow, a spacecraft of NASA's GRAIL program Computing * Flow network, graph-theoretic version of a mathematical flow * Flow analysis * Calligra Flow, free diagramming software * Dataflow, a broad concept in computer systems with many different meanings * Microsoft Flow (renamed to Power Automate in 2019), a workflow toolkit in Microsoft Dynamics * Neos Flow, a free and open source web application framework written in PHP * webMethods Flow, a graphical programming language * FLOW (programming language), an educational programming language from the 1970s * Flow (web browser), a web browser with a proprietary rendering engine Arts, entertainment and media * ''Flow'' (journal), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]