Schinzel's Hypothesis H
In mathematics, Schinzel's hypothesis H is one of the most famous open problems in the topic of number theory. It is a very broad generalization of widely open conjectures such as the twin prime conjecture. The hypothesis is named after Andrzej Schinzel. Statement The hypothesis claims that for every finite collection \ of nonconstant irreducible polynomials over the integers with positive leading coefficients, ''one of the following conditions'' holds: # There are infinitely many positive integers n such that all of f_1(n),f_2(n),\ldots,f_k(n) are simultaneously prime numbers, or # There is an integer m>1 (called a ''fixed divisor'') which always divides the product f_1(n)f_2(n)\cdots f_k(n). (Or, equivalently: There exists a prime p such that for every n there is an i such that p divides f_i(n).) The second condition is satisfied by sets such as f_1(x)=x+4, f_2(x)=x+7, since (x+4)(x+7) is always divisible by 2. It is easy to see that this condition prevents the ''first'' condit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dirichlet's Theorem On Arithmetic Progressions
In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers ''a'' and ''d'', there are infinitely many primes of the form ''a'' + ''nd'', where ''n'' is also a positive integer. In other words, there are infinitely many primes that are congruent to ''a'' modulo ''d''. The numbers of the form ''a'' + ''nd'' form an arithmetic progression :a,\ a+d,\ a+2d,\ a+3d,\ \dots,\ and Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem, named after Peter Gustav Lejeune Dirichlet, extends Euclid's theorem that there are infinitely many prime numbers. Stronger forms of Dirichlet's theorem state that for any such arithmetic progression, the sum of the reciprocals of the prime numbers in the progression diverges and that different such arithmetic progressions with the same modulus have approximately the same proportions of primes. Equivalently, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diophantine Geometry
In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Four theorems in Diophantine geometry which are of fundamental importance include: * Mordell–Weil Theorem * Roth's Theorem * Siegel's Theorem * Faltings's Theorem Background Serge Lang published a book ''Diophantine Geometry'' in the area in 1962, and by this book he coined the term "Diophantine Geometry". The traditional arrangement of material on Diophantine equations was by degree and number of variables, as in Mordell's ''Diophantine Equations'' (1969). Mordell's book starts with a remark on homogeneous equations ''f'' = 0 over the rational field, attributed to C. F. Gauss, that non-zero solutions in integers (even primitive lattice points) exist if non-zero rational solutions do, and notes a caveat of L. E. D ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conditional Result
A conditional proof is a proof that takes the form of asserting a conditional, and proving that the antecedent of the conditional necessarily leads to the consequent. Overview The assumed antecedent of a conditional proof is called the conditional proof assumption (CPA). Thus, the goal of a conditional proof is to demonstrate that if the CPA were true, then the desired conclusion necessarily follows. The validity of a conditional proof does not require that the CPA be true, only that ''if it were true'' it would lead to the consequent. Conditional proofs are of great importance in mathematics. Conditional proofs exist linking several otherwise unproven conjectures, so that a proof of one conjecture may immediately imply the validity of several others. It can be much easier to show a proposition's truth to follow from another proposition than to prove it independently. A famous network of conditional proofs is the NP-complete class of complexity theory. There is a large number ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Number Theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet ''L''-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem). Branches of analytic number theory Analytic number theory can be split up into two major parts, divided more by the type of problems they attempt to solve than fundamental differences in technique. *Multiplicative number theory deals with the distribution of the prime numbers, such as estimating the number of primes in an interval, and includes the prime number theorem and Dirichlet's theorem on primes in arithmetic progressions. *Additive number th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Recursion
Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references ("crock recursion") can occur. Formal definitions In mathematics and computer science, a class of objects or methods exhibits recursive behavior when it can be defined by two properties: * A simple ''base case'' (or cases) — a terminating scenario that does not use recursion to produce an answer * A ''recursive step'' — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ''ancestor''. One's ances ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Density Sieve
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek language, Greek letter Rho (letter), rho), although the Latin letter ''D'' can also be used. Mathematically, density is defined as mass divided by volume: : \rho = \frac where ''ρ'' is the density, ''m'' is the mass, and ''V'' is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more specifically called specific weight. For a pure substance the density has the same numerical value as its mass concentration (chemistry), mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium and iridium are the densest known elements at standard conditions for temperature and pressure. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Almost All
In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the mathematical context; for instance, it can mean finite, countable, or null. In contrast, "almost no" means "a negligible amount"; that is, "almost no elements of X" means "a negligible amount of elements of X". Meanings in different areas of mathematics Prevalent meaning Throughout mathematics, "almost all" is sometimes used to mean "all (elements of an infinite set) but finitely many". This use occurs in philosophy as well. Similarly, "almost all" can mean "all (elements of an uncountable set) but countably many". Examples: * Almost all positive integers are greater than 1012. * Almost all prime numbers are odd (2 is the only exception). * Almost all polyhedra are irregular (as there are only nine exceptions: the five platonic solids and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexei Skorobogatov
Alexei Nikolaievich Skorobogatov (russian: Алексе́й Никола́евич Скоробога́тов) is a British-Russian mathematician and Professor in Pure Mathematics at Imperial College London specialising in algebraic geometry. His work has focused on rational points, the Hasse principle, the Manin obstruction, exponential sums, and error-correcting codes. Education He completed his dissertation under the supervision of Yuri Manin, for which he was awarded a Ph.D. degree. Awards In 2001 he was awarded a Whitehead Prize by the London Mathematical Society. He was elected as a Fellow of the American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, ... in the 2020 Class, for "contributions to the Diophantine geometry of surfaces and higher dimen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current managing editors are Camillo De Lellis (Institute for Advanced Study, Princeton) and Jean-Benoît Bost (University of Paris-Sud Paris-Sud University (French: ''Université Paris-Sud''), also known as University of Paris — XI (or as Université d'Orsay before 1971), was a French research university distributed among several campuses in the southern suburbs of Paris, in ...). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Publications established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henryk Iwaniec
Henryk Iwaniec (born October 9, 1947) is a Polish-American mathematician, and since 1987 a professor at Rutgers University. Background and education Iwaniec studied at the University of Warsaw, where he got his PhD in 1972 under Andrzej Schinzel. He then held positions at the Institute of Mathematics of the Polish Academy of Sciences until 1983 when he left Poland. He held visiting positions at the Institute for Advanced Study, University of Michigan, and University of Colorado Boulder before being appointed Professor of Mathematics at Rutgers University. He is a citizen of both Poland and the United States. He and mathematician Tadeusz Iwaniec are twin brothers. Work Iwaniec studies both sieve methods and deep complex-analytic techniques, with an emphasis on the theory of automorphic forms and harmonic analysis. In 1997, Iwaniec and John Friedlander proved that there are infinitely many prime numbers of the form . Results of this strength had previously been seen as co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |