Sakurai’s Object
   HOME
*



picture info

Sakurai’s Object
Sakurai's Object (V4334 Sagittarii) is a star in the constellation of Sagittarius. It is thought to have previously been a white dwarf that, as a result of a very late thermal pulse, swelled and became a red giant. It is located at the center of a planetary nebula and is believed to currently be in thermal instability and within its final shell helium flash phase. At the time of its discovery, astronomers believed Sakurai's Object to be a slow nova. Later spectroscopic analysis suggested that the star was not a nova, but had instead undergone a very late thermal pulse similar to that of V605 Aquilae, causing it to vastly expand. V605 Aquilae, which was discovered in 1919, is the only other star known to have been observed during the high luminosity phase of a very late thermal pulse, and models predict that Sakurai's Object, over the next few decades, will follow a similar life cycle. Sakurai's Object and other similar stars are expected to end up as helium-rich whit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nova
A nova (plural novae or novas) is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", which is Latin for "new") that slowly fades over weeks or months. Causes of the dramatic appearance of a nova vary, depending on the circumstances of the two progenitor stars. All observed novae involve white dwarfs in close binary systems. The main sub-classes of novae are classical novae, recurrent novae (RNe), and dwarf novae. They are all considered to be cataclysmic variable stars. Classical nova eruptions are the most common type. They are likely created in a close binary star system consisting of a white dwarf and either a main sequence, subgiant, or red giant star. When the orbital period falls in the range of several days to one day, the white dwarf is close enough to its companion star to start drawing accreted matter onto the surface of the white dwarf, which creates a dense but shallow atmosphere. This atmosphe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parsec
The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, and is defined as the distance at which 1 au subtends an angle of one arcsecond ( of a degree). This corresponds to astronomical units, i.e. 1\, \mathrm = 1/\tan \left( \ \mathrm \right)\, \mathrm. The nearest star, Proxima Centauri, is about from the Sun. Most stars visible to the naked eye are within a few hundred parsecs of the Sun, with the most distant at a few thousand. The word ''parsec'' is a portmanteau of "parallax of one second" and was coined by the British astronomer Herbert Hall Turner in 1913 to make calculations of astronomical distances from only raw observational data easy for astronomers. Partly for this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in popular s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nebula
A nebula ('cloud' or 'fog' in Latin; pl. nebulae, nebulæ or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the "Pillars of Creation" in the Eagle Nebula. In these regions, the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter, and eventually will become dense enough to form stars. The remaining material is then thought to form planets and other planetary system objects. Most nebulae are of vast size; some are hundreds of light-years in diameter. A nebula that is visible to the human eye from Earth would appear larger, but no brighter, from close by. The Orion Nebula, the brightest nebula in the sky and occupying an area twice the angular diameter of the full Moon, can be viewed with the naked eye but was missed by early astronomers. Although denser than the space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Helium Flash
A helium flash is a very brief thermal runaway nuclear fusion of large quantities of helium into carbon through the triple-alpha process in the core of low mass stars (between 0.8 solar masses () and 2.0 ) during their red giant phase (the Sun is predicted to experience a flash 1.2 billion years after it leaves the main sequence). A much rarer runaway helium fusion process can also occur on the surface of accreting white dwarf stars. Low-mass stars do not produce enough gravitational pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into degenerate matter, supported against gravitational collapse by quantum mechanical pressure rather than thermal pressure. This increases the density and temperature of the core until it reaches approximately 100 million kelvin, which is hot enough to cause helium fusion (or "helium burning") in the core. However, a fundamental quality of degenerate matter is tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilmar Duerbeck
Hilmar Willi Duerbeck (19 July 1948 – 5 January 2012) was a German astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, moons, comets and galaxies – in either .... He studied at the University of Bonn and worked at the Observatory Hoher List. He was married to astronomer Waltraut Seitter. External links * * HomepageHilmar W. Duerbeck 20th-century German astronomers University of Bonn alumni 1948 births 2012 deaths 21st-century German astronomers {{germany-astronomer-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Syuichi Nakano
is a Japanese astronomer. He specializes in the study of comets, in particular calculating their orbits and making predictions about when periodic comets will return for another perihelion approach. It is considerably more difficult to predict the orbits of comets than of other types of Solar System objects, since their orbits are susceptible not only to perturbations from the planets but also to non-gravitational forces due to the release of gaseous material in the form of a comet's coma and tail. He is affiliated with the Computing & Minor Planet Sections (Center for Astrodynamics) of the Oriental Astronomical Association in Sumoto, Japan. He publishes the ''Nakano Notes'' on comet observations and ephemerides. In 2001 he won the Amateur Achievement Award of the Astronomical Society of the Pacific. The asteroid 3431 Nakano is named after him, and asteroid 3983 Sakiko is named after his sister. 1026 Ingrid was reidentified in 1986 by Syuichi Nakano, ending its time as a l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnitude (astronomy)
In astronomy, magnitude is a unitless measure of the brightness Brightness is an attribute of visual perception in which a source appears to be radiating or reflecting light. In other words, brightness is the perception elicited by the luminance of a visual target. The perception is not linear to luminance, ... of an astronomical object, object in a defined passband, often in the visible spectrum, visible or infrared spectrum, but sometimes across all wavelengths. An imprecise but systematic determination of the magnitude of objects was introduced in ancient times by Hipparchus. The scale is Logarithmic scale, logarithmic and defined such that a magnitude 1 star is exactly 100 times brighter than a magnitude 6 star. Thus each step of one magnitude is \sqrt[5] \approx 2.512 times brighter than the magnitude 1 higher. The brighter an object appears, the lower the value of its magnitude, with the brightest objects reaching negative values. Astronomers use two different defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nova
A nova (plural novae or novas) is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", which is Latin for "new") that slowly fades over weeks or months. Causes of the dramatic appearance of a nova vary, depending on the circumstances of the two progenitor stars. All observed novae involve white dwarfs in close binary systems. The main sub-classes of novae are classical novae, recurrent novae (RNe), and dwarf novae. They are all considered to be cataclysmic variable stars. Classical nova eruptions are the most common type. They are likely created in a close binary star system consisting of a white dwarf and either a main sequence, subgiant, or red giant star. When the orbital period falls in the range of several days to one day, the white dwarf is close enough to its companion star to start drawing accreted matter onto the surface of the white dwarf, which creates a dense but shallow atmosphere. This atmosphe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IAU Circular
The International Astronomical Union Circulars (IAUCs) are notices that give information about astronomical phenomena. IAUCs are issued by the International Astronomical Union's Central Bureau for Astronomical Telegrams (CBAT) at irregular intervals for the discovery and follow-up information regarding such objects as planetary satellites, novae, supernovae, and comets. History The first series of IAUCs was published at Uccle during 1920–1922 when the IAU's first CBAT was located there; the first IAUC published in the present series was published in 1922 at Copenhagen Observatory after the transfer of the CBAT from Uccle to Copenhagen. At the end of 1964, the CBAT moved from Copenhagen to the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, where it remains, on the grounds of the Harvard College Observatory (HCO). HCO had maintained a Central Bureau for the Western hemisphere from 1883 until the end of 1964, when its staff took on the IAU's CBAT; HCO had pub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]