HOME
*





SLC16A8
Monocarboxylate transporter 3 (MCT3) also known as solute carrier family 16 member 8 is a protein that in humans is encoded by the ''SLC16A8'' gene. MCT is a proton-coupled monocarboxylate transporter. It catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate. It also functions as high-affinity pyruvate transporter. Expression of SLC16A8 is confined to the retinal pigment epithelium and choroid plexus epithelia, where it is located on the basal membrane in contrast to MCT1 which is found on the apical membrane. See also * Monocarboxylate transporter The monocarboxylate transporters, or MCTs, are a family of proton-linked plasma membrane transporters that carry molecules having one carboxylate group (monocarboxylates), such as lactate, pyruvate, and ketones across biological membranes. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monocarboxylate Transporter
The monocarboxylate transporters, or MCTs, are a family of proton-linked plasma membrane transporters that carry molecules having one carboxylate group (monocarboxylates), such as lactate, pyruvate, and ketones across biological membranes. MCTs are expressed in nearly every kind of cell. There are 14 MCTs corresponding to 14 solute carrier 16A transporters, although the cardinal numbers do not match (for example MCT3 is SLC16A8). MCTs 1-4 have been more carefully investigated than MCTs 5-14. MCTs can be upregulated by PPAR-α, HIF-1α, Nrf2, and AMPK. Lactate and the Cori cycle Lactate has long been considered a byproduct resulting from glucose breakdown through glycolysis during anaerobic metabolism. Glycolysis requires the coenzyme NAD+, and reduces it to NADH. As a means of regenerating NAD+ to allow glycolysis to continue, lactate dehydrogenase catalyzes the conversion of pyruvate to lactate in the cytosol, oxidizing NADH to NAD+. Lactate is then transported fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monocarboxylate Transporter
The monocarboxylate transporters, or MCTs, are a family of proton-linked plasma membrane transporters that carry molecules having one carboxylate group (monocarboxylates), such as lactate, pyruvate, and ketones across biological membranes. MCTs are expressed in nearly every kind of cell. There are 14 MCTs corresponding to 14 solute carrier 16A transporters, although the cardinal numbers do not match (for example MCT3 is SLC16A8). MCTs 1-4 have been more carefully investigated than MCTs 5-14. MCTs can be upregulated by PPAR-α, HIF-1α, Nrf2, and AMPK. Lactate and the Cori cycle Lactate has long been considered a byproduct resulting from glucose breakdown through glycolysis during anaerobic metabolism. Glycolysis requires the coenzyme NAD+, and reduces it to NADH. As a means of regenerating NAD+ to allow glycolysis to continue, lactate dehydrogenase catalyzes the conversion of pyruvate to lactate in the cytosol, oxidizing NADH to NAD+. Lactate is then transported fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Retinal Pigment Epithelium
The pigmented layer of retina or retinal pigment epithelium (RPE) is the pigmented cell layer just outside the neurosensory retina that nourishes retinal visual cells, and is firmly attached to the underlying choroid and overlying retinal visual cells. History The RPE was known in the 18th and 19th centuries as the pigmentum nigrum, referring to the observation that the RPE is dark (black in many animals, brown in humans); and as the tapetum nigrum, referring to the observation that in animals with a tapetum lucidum, in the region of the tapetum lucidum the RPE is not pigmented. Anatomy The RPE is composed of a single layer of hexagonal cells that are densely packed with pigment granules. When viewed from the outer surface, these cells are smooth and hexagonal in shape. When seen in section, each cell consists of an outer non-pigmented part containing a large oval nucleus and an inner pigmented portion which extends as a series of straight thread-like processes between the rods, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Choroid Plexus
The choroid plexus, or plica choroidea, is a plexus of cells that arises from the tela choroidea in each of the ventricles of the brain. Regions of the choroid plexus produce and secrete most of the cerebrospinal fluid (CSF) of the central nervous system. The choroid plexus consists of modified ependymal cells surrounding a core of capillaries and loose connective tissue. Multiple cilia on the ependymal cells move to circulate the cerebrospinal fluid. Structure Location There is a choroid plexus in each of the four ventricles. In the lateral ventricles it is found in the body, and continued in an enlarged amount in the atrium. There is no choroid plexus in the anterior horn. In the third ventricle there is a small amount in the roof that is continuous with that in the body, via the interventricular foramina, the channels that connect the lateral ventricles with the third ventricle. A choroid plexus is in part of the roof of the fourth ventricle. Microanatomy The chor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MCT1
Monocarboxylate transporter 1 is a ubiquitous protein that in humans is encoded by the ''SLC16A1'' gene (also known as MCT1). It is a proton coupled monocarboxylate transporter. Biochemistry Detailed kinetic analysis of monocarboxylate transport in erythrocytes revealed that MCT1 operates through an ordered mechanism. MCT1 has a substrate binding site open to the extracellular matrix which binds a proton first followed by the lactate anion. The protein then undergoes a conformational change to a new ‘closed’’ conformation that exposes both the proton and lactate to the opposite surface of the membrane where they are released, lactate first and then the proton. For net transport of lactic acid, the rate-limiting step is the return of MCT1 without bound substrate to the open conformation. For this reason, exchange of one monocarboxylate inside the cell with another outside is considerably faster than net transport of a monocarboxylate across the membrane. MCT1 can be Downregula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]