Rule Of Three (statistics)
   HOME



picture info

Rule Of Three (statistics)
In statistical analysis, the rule of three states that if a certain event did not occur in a sample with Design of experiments, subjects, the interval from 0 to 3/ is a 95% confidence interval for the rate of occurrences in the population (statistics), population. When is greater than 30, this is a good approximation of results from more sensitive tests. For example, a pain-relief drug is tested on 1500 Human subjects research, human subjects, and no adverse event is recorded. From the rule of three, it can be concluded with 95% confidence that fewer than 1 person in 500 (or 3/1500) will experience an adverse event. By symmetry, for only successes, the 95% confidence interval is . The rule is useful in the interpretation of clinical trials generally, particularly in Phases of clinical research#Phase II, phase II and phase III where often there are limitations in duration or statistical power. The rule of three applies well beyond medical research, to any trial done t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Rule Of Three
Rule of three or Rule of Thirds may refer to: Science and technology *Rule of three (aeronautics), a rule of descent in aviation *Rule of three (C++ programming), a rule of thumb about class method definitions *Rule of three (computer programming), a rule of thumb about code refactoring *Rule of three (hematology), a rule of thumb to check if blood count results are correct *Rule of three (mathematics), a method in arithmetic *Rule of three (medicinal chemistry), a rule of thumb for lead-like compounds *Rule of three (statistics), for calculating a confidence limit when no events have been observed *Rule of threes (survival), the rule of threes involves the priorities in order to survive Arts and entertainment * ''Rule of Three'', a podcast by Jason Hazeley and Joel Morris#Podcast, Jason Hazeley and Joel Morris * ''Rule of Three'', a series of one-act plays Agatha Christie bibliography, by Agatha Christie * The Bellman's Rule of Three in ''The Hunting of the Snark'', a poem by Le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Binomial Distribution
In probability theory and statistics, the binomial distribution with parameters and is the discrete probability distribution of the number of successes in a sequence of statistical independence, independent experiment (probability theory), experiments, each asking a yes–no question, and each with its own Boolean-valued function, Boolean-valued outcome (probability), outcome: ''success'' (with probability ) or ''failure'' (with probability ). A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., , the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the binomial test of statistical significance. The binomial distribution is frequently used to model the number of successes in a sample of size drawn with replacement from a population of size . If the sampling is carried out without replacement, the draws ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Statistical Approximations
Statistics (from German: ', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments. When census data (comprising every member of the target population) cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample to the population as a whole. An experimental study involves taking measurements of the sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Clinical Trials
Clinical trials are prospective biomedical or behavioral research studies on human subject research, human participants designed to answer specific questions about biomedical or behavioral interventions, including new treatments (such as novel vaccines, pharmaceutical drug, drugs, medical nutrition therapy, dietary choices, dietary supplements, and medical devices) and known interventions that warrant further study and comparison. Clinical trials generate data on dosage, safety and efficacy. They are conducted only after they have received institutional review board, health authority/ethics committee approval in the country where approval of the therapy is sought. These authorities are responsible for vetting the risk/benefit ratio of the trial—their approval does not mean the therapy is 'safe' or effective, only that the trial may be conducted. Depending on product type and development stage, investigators initially enroll volunteers or patients into small Pilot experiment, pi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Rule Of Succession
In probability theory, the rule of succession is a formula introduced in the 18th century by Pierre-Simon Laplace in the course of treating the sunrise problem. The formula is still used, particularly to estimate underlying probabilities when there are few observations or events that have not been observed to occur at all in (finite) sample data. Statement of the rule of succession If we repeat an experiment that we know can result in a success or failure, ''n'' times independently, and get ''s'' successes, and ''n − s'' failures, then what is the probability that the next repetition will succeed? More abstractly: If ''X''1, ..., ''X''''n''+1 are conditionally independent random variables that each can assume the value 0 or 1, then, if we know nothing more about them, :P(X_=1 \mid X_1+\cdots+X_n=s)=. Interpretation Since we have the prior knowledge that we are looking at an experiment for which both success and failure are possible, our estimate is as if we had observ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Binomial Proportion Confidence Interval
In statistics, a binomial proportion confidence interval is a confidence interval for the probability of success calculated from the outcome of a series of success–failure experiments (Bernoulli trials). In other words, a binomial proportion confidence interval is an interval estimate of a success probability \ p\ when only the number of experiments \ n\ and the number of successes \ n_\mathsf\ are known. There are several formulas for a binomial confidence interval, but all of them rely on the assumption of a binomial distribution. In general, a binomial distribution applies when an experiment is repeated a fixed number of times, each trial of the experiment has two possible outcomes (success and failure), the probability of success is the same for each trial, and the trials are statistically independent. Because the binomial distribution is a discrete probability distribution (i.e., not continuous) and difficult to calculate for large numbers of trials, a variety of approxima ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Cantelli's Inequality
In probability theory, Cantelli's inequality (also called the Chebyshev-Cantelli inequality and the one-sided Chebyshev inequality) is an improved version of Chebyshev's inequality for one-sided tail bounds. The inequality states that, for \lambda > 0, : \Pr(X-\mathbb ge\lambda) \le \frac, where :X is a real-valued random variable, :\Pr is the probability measure, :\mathbb /math> is the expected value of X, :\sigma^2 is the variance of X. Applying the Cantelli inequality to -X gives a bound on the lower tail, : \Pr(X-\mathbb le -\lambda) \le \frac. While the inequality is often attributed to Francesco Paolo Cantelli who published it in 1928, it originates in Chebyshev's work of 1874. When bounding the event random variable deviates from its mean A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. There are several kinds of means (or "measures of central tendency") in mathematics, es ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Chebyshev's Inequality
In probability theory, Chebyshev's inequality (also called the Bienaymé–Chebyshev inequality) provides an upper bound on the probability of deviation of a random variable (with finite variance) from its mean. More specifically, the probability that a random variable deviates from its mean by more than k\sigma is at most 1/k^2, where k is any positive constant and \sigma is the standard deviation (the square root of the variance). The rule is often called Chebyshev's theorem, about the range of standard deviations around the mean, in statistics. The inequality has great utility because it can be applied to any probability distribution in which the mean and variance are defined. For example, it can be used to prove the weak law of large numbers. Its practical usage is similar to the 68–95–99.7 rule, which applies only to normal distributions. Chebyshev's inequality is more general, stating that a minimum of just 75% of values must lie within two standard deviations of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Variance
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by \sigma^2, s^2, \operatorname(X), V(X), or \mathbb(X). An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for example, the variance of a sum of uncorrelated random variables is equal to the sum of their variances. A disadvantage of the variance for practical applications is that, unlike the standard deviation, its units differ from the random variable, which is why the standard devi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Unimodal Function
In mathematics, unimodality means possessing a unique mode. More generally, unimodality means there is only a single highest value, somehow defined, of some mathematical object. Unimodal probability distribution In statistics, a unimodal probability distribution or unimodal distribution is a probability distribution which has a single peak. The term "mode" in this context refers to any peak of the distribution, not just to the strict definition of mode which is usual in statistics. If there is a single mode, the distribution function is called "unimodal". If it has more modes it is "bimodal" (2), "trimodal" (3), etc., or in general, "multimodal". Figure 1 illustrates normal distributions, which are unimodal. Other examples of unimodal distributions include Cauchy distribution, Student's ''t''-distribution, chi-squared distribution and exponential distribution. Among discrete distributions, the binomial distribution and Poisson distribution can be seen as unimodal, thoug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Vysochanskij–Petunin Inequality
In probability theory, the Vysochanskij– Petunin inequality gives a lower bound for the probability that a random variable with finite variance lies within a certain number of standard deviations of the variable's mean, or equivalently an upper bound for the probability that it lies further away. The sole restrictions on the distribution are that it be unimodal and have finite variance; here ''unimodal'' implies that it is a continuous probability distribution except at the mode, which may have a non-zero probability. Theorem Let X be a random variable with unimodal distribution, and \alpha\in \mathbb R. If we define \rho=\sqrt then for any r>0, :\begin \operatorname(, X-\alpha, \ge r)\le \begin \frac&r\ge \sqrt\rho \\ \frac-\frac&r\le \sqrt\rho. \\ \end \end Relation to Gauss's inequality Taking \alpha equal to a mode of X yields the first case of Gauss's inequality. Tightness of Bound Without loss of generality, assume \alpha=0 and \rho=1. * If r. * If 1\le r\le \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Natural Logarithm
The natural logarithm of a number is its logarithm to the base of a logarithm, base of the e (mathematical constant), mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if the base is implicit, simply . Parentheses are sometimes added for clarity, giving , , or . This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity. The natural logarithm of is the exponentiation, power to which would have to be raised to equal . For example, is , because . The natural logarithm of itself, , is , because , while the natural logarithm of is , since . The natural logarithm can be defined for any positive real number as the Integral, area under the curve from to (with the area being negative when ). The simplicity of this definition, which is matched in many other formulas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]