Rothe–Hagen Identity
   HOME
*





Rothe–Hagen Identity
In mathematics, the Rothe–Hagen identity is a mathematical identity valid for all complex numbers (x, y, z) except where its denominators vanish: :\sum_^n\frac\frac=\frac. It is a generalization of Vandermonde's identity, and is named after Heinrich August Rothe and Johann Georg Hagen Johann (John) Georg Hagen (March 6, 1847 – September 6, 1930) was an Austrian Jesuit priest and astronomer. After serving as Director of the Georgetown University Observatory he was called to Rome by Pope Pius X in 1906 to be the first Je .... References *. *. See especially pp. 89–91. *. As cited by . *. *. As cited by . Factorial and binomial topics Mathematical identities Complex analysis {{mathapplied-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Identity
In mathematics, an identity is an equality relating one mathematical expression ''A'' to another mathematical expression ''B'', such that ''A'' and ''B'' (which might contain some variables) produce the same value for all values of the variables within a certain range of validity. In other words, ''A'' = ''B'' is an identity if ''A'' and ''B'' define the same functions, and an identity is an equality between functions that are differently defined. For example, (a+b)^2 = a^2 + 2ab + b^2 and \cos^2\theta + \sin^2\theta =1 are identities. Identities are sometimes indicated by the triple bar symbol instead of , the equals sign. Common identities Algebraic identities Certain identities, such as a+0=a and a+(-a)=0, form the basis of algebra, while other identities, such as (a+b)^2 = a^2 + 2ab +b^2 and a^2 - b^2 = (a+b)(a-b), can be useful in simplifying algebraic expressions and expanding them. Trigonometric identities Geometrically, trigonometric ide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero Of A Function
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is the solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6 has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real numbers, then it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vandermonde's Identity
In combinatorics, Vandermonde's identity (or Vandermonde's convolution) is the following identity for binomial coefficients: :=\sum_^r for any nonnegative integers ''r'', ''m'', ''n''. The identity is named after Alexandre-Théophile Vandermonde (1772), although it was already known in 1303 by the Chinese mathematician Zhu Shijie.See for the history. There is a ''q''-analog to this theorem called the ''q''-Vandermonde identity. Vandermonde's identity can be generalized in numerous ways, including to the identity : = \sum_ \cdots . Proofs Algebraic proof In general, the product of two polynomials with degrees ''m'' and ''n'', respectively, is given by :\biggl(\sum_^m a_ix^i\biggr) \biggl(\sum_^n b_jx^j\biggr) = \sum_^\biggl(\sum_^r a_k b_\biggr) x^r, where we use the convention that ''ai'' = 0 for all integers ''i'' > ''m'' and ''bj'' = 0 for all integers ''j'' > ''n''. By the binomial theorem, :(1+x)^ = \sum_^ x^r. U ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heinrich August Rothe
Heinrich August Rothe (1773–1842) was a German mathematician, a professor of mathematics at Erlangen. He was a student of Carl Hindenburg and a member of Hindenburg's school of combinatorics. Biography Rothe was born in 1773 in Dresden, and in 1793 became a docent at the University of Leipzig. He became an extraordinary professor at Leipzig in 1796, and in 1804 he moved to Erlangen as a full professor, taking over the chair formerly held by Karl Christian von Langsdorf. He died in 1842, and his position at Erlangen was in turn taken by Johann Wilhelm Pfaff, the brother of the more famous mathematician Johann Friedrich Pfaff. Research The Rothe–Hagen identity, a summation formula for binomial coefficients, appeared in Rothe's 1793 thesis. It is named for him and for the later work of Johann Georg Hagen. The same thesis also included a formula for computing the Taylor series of an inverse function from the Taylor series for the function itself, related to the Lagrange inversion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Johann Georg Hagen
Johann (John) Georg Hagen (March 6, 1847 – September 6, 1930) was an Austrian Jesuit priest and astronomer. After serving as Director of the Georgetown University Observatory he was called to Rome by Pope Pius X in 1906 to be the first Jesuit director of the new Vatican Observatory. Father Hagen was also the spiritual director of Maria Elizabeth Hesselblad (1870-1957), who was baptized by him on August 15, 1902 and eventually was canonized on June 5, 2016 by Pope Francis. Early life Johann Georg Hagen was born in Bregenz, Austria on 6 March 1847, the son of a school teacher. Entering the Jesuit Order Johann entered the Society of Jesus, commonly known as the Jesuits, in Gorheim, Germany in 1863. He attended the Jesuit College Stella Matutina in Feldkirch, Austria and also studied mathematics and astronomy at the University of Bonn and the University of Münster. He volunteered for the ambulance service in the Franco-Prussian War, but was struck with typhoid fever. Exp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electronic Journal Of Combinatorics
The ''Electronic Journal of Combinatorics'' is a peer-reviewed open access scientific journal covering research in combinatorial mathematics. The journal was established in 1994 by Herbert Wilf (University of Pennsylvania) and Neil Calkin (Georgia Institute of Technology). The Electronic Journal of Combinatorics is a founding member of the Free Journal Network. According to the ''Journal Citation Reports'', the journal had a 2017 impact factor of 0.762. Editors-in-chief Current The current editors-in-chief are: * Maria Axenovich, Karlsruhe Institute of Technology, Germany * Miklós Bóna, University of Florida, United States * Julia Böttcher, London School of Economics, United Kingdom * Richard A. Brualdi, University of Wisconsin, Madison, United States * Eric Fusy, CNRS/LIX, École Polytechnique, France * Catherine Greenhill, UNSW Sydney, Australia * Brendan McKay, Australian National University, Australia * Bojan Mohar, Simon Fraser University, Canada * Marc Noy, Universitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The American Mathematical Monthly
''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. In this the ''American Mathematical Monthly'' fulfills a different role from that of typical mathematical research journals. The ''American Mathematical Monthly'' is the most widely read mathematics journal in the world according to records on JSTOR. Tables of contents with article abstracts from 1997–2010 are availablonline The MAA gives the Lester R. Ford Awards annually to "authors of articles of expository excellence" published in the ''American Mathematical Monthly''. Editors *2022– ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTAEditorial board of JCTB
Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. An electronic,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorial And Binomial Topics
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book '' Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the exponential function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematical Identities
In mathematics, an identity is an equality relating one mathematical expression ''A'' to another mathematical expression ''B'', such that ''A'' and ''B'' (which might contain some variables) produce the same value for all values of the variables within a certain range of validity. In other words, ''A'' = ''B'' is an identity if ''A'' and ''B'' define the same functions, and an identity is an equality between functions that are differently defined. For example, (a+b)^2 = a^2 + 2ab + b^2 and \cos^2\theta + \sin^2\theta =1 are identities. Identities are sometimes indicated by the triple bar symbol instead of , the equals sign. Common identities Algebraic identities Certain identities, such as a+0=a and a+(-a)=0, form the basis of algebra, while other identities, such as (a+b)^2 = a^2 + 2ab +b^2 and a^2 - b^2 = (a+b)(a-b), can be useful in simplifying algebraic expressions and expanding them. Trigonometric identities Geometrically, trigonometric ide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]