Romanovski Polynomials
   HOME
*





Romanovski Polynomials
In mathematics, the Romanovski polynomials are one of three finite subsets of real orthogonal polynomials discovered by Vsevolod Romanovsky (Romanovski in French transcription) within the context of probability distribution functions in statistics. They form an orthogonal subset of a more general family of little-known Routh polynomials introduced by Edward John Routh in 1884. The term Romanovski polynomials was put forward by Raposo, with reference to the so-called 'pseudo-Jacobi polynomials in Lesky's classification scheme. It seems more consistent to refer to them as Romanovski–Routh polynomials, by analogy with the terms Romanovski–Bessel and Romanovski–Jacobi used by Lesky for two other sets of orthogonal polynomials. In some contrast to the standard classical orthogonal polynomials, the polynomials under consideration differ, in so far as for arbitrary parameters only ''a finite number of them are orthogonal'', as discussed in more detail below. The differential equatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recurrence Relations
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Special Hypergeometric Functions
Special or specials may refer to: Policing * Specials, Ulster Special Constabulary, the Northern Ireland police force * Specials, Special Constable, an auxiliary, volunteer, or temporary; police worker or police officer Literature * Specials (novel), ''Specials'' (novel), a novel by Scott Westerfeld * ''Specials'', the comic book heroes, see Rising Stars (comic), ''Rising Stars'' (comic) Film and television * Special (lighting), a stage light that is used for a single, specific purpose * Special (film), ''Special'' (film), a 2006 scifi dramedy * The Specials (2000 film), ''The Specials'' (2000 film), a comedy film about a group of superheroes * The Specials (2019 film), ''The Specials'' (2019 film), a film by Olivier Nakache and Éric Toledano * Television special, television programming that temporarily replaces scheduled programming * Special (TV series), ''Special'' (TV series), a 2019 Netflix Original TV series * Specials (TV series), ''Specials'' (TV series), a 1991 TV ser ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trigonometric Rosen–Morse Potential
The trigonometric Rosen–Morse potential, named after the physicists Nathan Rosen and Philip M. Morse, is among the exactly solvable quantum mechanical potentials. Definition In dimensionless units and modulo additive constants, it is defined as where r is a relative distance, \lambda is an angle rescaling parameter, and R is so far a matching length parameter. Another parametrization of same potential is which is the trigonometric version of a one-dimensional hyperbolic potential introduced in molecular physics by Nathan Rosen and Philip M. Morse and given by, a parallelism that explains the potential's name. The most prominent application concerns the V_^(\chi) parametrization, with \ell non-negative integer, and is due to Schrödinger who intended to formulate the hydrogen atom problem on Albert Einstein's closed universe, R^1\otimes S^3, the direct product of a time line with a three-dimensional closed space of positive constant curvature, the hypersphere S^, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spherical Harmonics
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. Since the spherical harmonics form a complete set of orthogonal functions and thus an orthonormal basis, each function defined on the surface of a sphere can be written as a sum of these spherical harmonics. This is similar to periodic functions defined on a circle that can be expressed as a sum of circular functions (sines and cosines) via Fourier series. Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right. Further, spherical harmonics are basis functions for irreducible representations of SO(3), the group of rotations in three dimensions, and thus play a central role in the group theoretic discussion of SO(3). Spherical harmonics originate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Legendre Polynomials
In physical science and mathematics, Legendre polynomials (named after Adrien-Marie Legendre, who discovered them in 1782) are a system of complete and orthogonal polynomials, with a vast number of mathematical properties, and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications. Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, and associated Legendre functions. Definition by construction as an orthogonal system In this approach, the polynomials are defined as an orthogonal system with respect to the weight function w(x) = 1 over the interval 1,1/math>. That is, P_n(x) is a polynomial of degree n, such that \int_^1 P_m(x) P_n(x) \,dx = 0 \quad \text n \ne m. With the additional standardization co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jacobi Polynomials
In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) P_n^(x) are a class of Classical orthogonal polynomials, classical orthogonal polynomials. They are orthogonal with respect to the weight (1-x)^\alpha(1+x)^\beta on the interval [-1,1]. The Gegenbauer polynomials, and thus also the Legendre polynomials, Legendre, Zernike polynomials, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials. The definition is in IV.1; the differential equation – in IV.2; Rodrigues' formula is in IV.3; the generating function is in IV.4; the recurrent relation is in IV.5. The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi. Definitions Via the hypergeometric function The Jacobi polynomials are defined via the hypergeometric function as follows: :P_n^(z)=\frac\,_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac(1-z)\right), where (\alpha+1)_n is Pochhammer symbol, Pochhammer's symbol (for the rising factorial). In this case, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Legendre Wavelet
In functional analysis, compactly supported wavelets derived from Legendre polynomials are termed Legendre wavelets or spherical harmonic wavelets. Legendre functions have widespread applications in which spherical coordinate system is appropriate.Colomer and Colomer As with many wavelets there is no nice analytical formula for describing these harmonic spherical wavelets. The low-pass filter associated to Legendre multiresolution analysis is a finite impulse response (FIR) filter. Wavelets associated to FIR filters are commonly preferred in most applications. An extra appealing feature is that the Legendre filters are ''linear phase'' FIR (i.e. multiresolution analysis associated with linear phase filters). These wavelets have been implemented on MATLAB (wavelet toolbox). Although being compactly supported wavelet, legdN are not orthogonal (but for ''N'' = 1). Legendre multiresolution filters Associated Legendre polynomials are the colatitudinal part of the spherical harmonics w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Turán's Inequalities
In mathematics, Turán's inequalities are some inequalities for Legendre polynomials found by (and first published by ). There are many generalizations to other polynomials, often called Turán's inequalities, given by and other authors. If is the th Legendre polynomial, Turán's inequalities state that :\,\! P_n(x)^2 > P_(x)P_(x)\text-10 \text-1


See also

* *
Sturm Chain In mathematics, the Sturm sequence of a univariate polynomial is a sequence of polynomials associated with and its derivative by a variant of Euclid's algorithm for polynomials. Sturm's theorem expresses the number of distinct real roots of loc ...
...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Legendre Rational Functions
In mathematics the Legendre rational functions are a sequence of orthogonal functions on  , ∞). They are obtained by composing the Cayley transform with Legendre polynomials">Cayley_transform.html" ;"title=", ∞). They are obtained by composing the Cayley transform">, ∞). They are obtained by composing the Cayley transform with Legendre polynomials. A rational Legendre function of degree ''n'' is defined as: :R_n(x) = \frac\,P_n\left(\frac\right) where P_n(x) is a Legendre polynomial. These functions are eigenfunctions of the singular Sturm–Liouville problem: :(x+1)\partial_x(x\partial_x((x+1)v(x)))+\lambda v(x)=0 with eigenvalues :\lambda_n=n(n+1)\, Properties Many properties can be derived from the properties of the Legendre polynomials of the first kind. Other properties are unique to the functions themselves. Recursion :R_(x)=\frac\,\frac\,R_n(x)-\frac\,R_(x)\quad\mathrm and :2(2n+1)R_n(x)=(x+1)^2(\partial_x R_(x)-\partial_x R_(x))+(x+1) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gegenbauer Polynomials
In mathematics, Gegenbauer polynomials or ultraspherical polynomials ''C''(''x'') are orthogonal polynomials on the interval minus;1,1with respect to the weight function (1 − ''x''2)''α''–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer. Characterizations File:Plot of the Gegenbauer polynomial C n^(m)(x) with n=10 and m=1 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg, Plot of the Gegenbauer polynomial C n^(m)(x) with n=10 and m=1 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D File:Mplwp gegenbauer Cn05a1.svg, Gegenbauer polynomials with ''α''=1 File:Mplwp gegenbauer Cn05a2.svg, Gegenbauer polynomials with ''α''=2 File:Mplwp gegenbauer Cn05a3.svg, Gegenbauer polynomials with ''α''=3 File:Gegenbauer polynomials.gif, An animation showing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Quadrature
In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An -point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree or less by a suitable choice of the nodes and weights for . The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as , so the rule is stated as :\int_^1 f(x)\,dx \approx \sum_^n w_i f(x_i), which is exact for polynomials of degree or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if is well-approximated by a polynomial of degree or less on . The Gaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]