Rigid Cohomology
   HOME
*





Rigid Cohomology
In mathematics, rigid cohomology is a ''p''-adic cohomology theory introduced by . It extends crystalline cohomology to schemes that need not be proper or smooth, and extends Monsky–Washnitzer cohomology to non-affine varieties. For a scheme ''X'' of finite type over a perfect field ''k'', there are rigid cohomology groups ''H''(''X''/''K'') which are finite dimensional vector spaces over the field ''K'' of fractions of the ring of Witt vectors of ''k''. More generally one can define rigid cohomology with compact supports, or with support on a closed subscheme, or with coefficients in an overconvergent isocrystal. If ''X'' is smooth and proper over ''k'' the rigid cohomology groups are the same as the crystalline cohomology groups. The name "rigid cohomology" comes from its relation to rigid analytic spaces. used rigid cohomology to give a new proof of the Weil conjectures In mathematics, the Weil conjectures were highly influential proposals by . They led to a successful ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic Cohomology
In mathematics, p-adic cohomology means a cohomology theory for varieties of characteristic ''p'' whose values are modules over a ring of ''p''-adic integers. Examples (in roughly historical order) include: * Serre's Witt vector cohomology * Monsky–Washnitzer cohomology * Infinitesimal cohomology * Crystalline cohomology * Rigid cohomology See also *p-adic Hodge theory *Étale cohomology In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjecture ..., taking values over a ring of ''l''-adic integers for ''l''≠''p'' Arithmetic geometry Cohomology theories {{SIA, mathematics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Crystalline Cohomology
In mathematics, crystalline cohomology is a Weil cohomology theory for schemes ''X'' over a base field ''k''. Its values ''H''''n''(''X''/''W'') are modules over the ring ''W'' of Witt vectors over ''k''. It was introduced by and developed by . Crystalline cohomology is partly inspired by the ''p''-adic proof in of part of the Weil conjectures and is closely related to the algebraic version of de Rham cohomology that was introduced by Grothendieck (1963). Roughly speaking, crystalline cohomology of a variety ''X'' in characteristic ''p'' is the de Rham cohomology of a smooth lift of ''X'' to characteristic 0, while de Rham cohomology of ''X'' is the crystalline cohomology reduced mod ''p'' (after taking into account higher ''Tor''s). The idea of crystalline cohomology, roughly, is to replace the Zariski open sets of a scheme by infinitesimal thickenings of Zariski open sets with divided power structures. The motivation for this is that it can then be calculated by taking a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scheme (mathematics)
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Formally, a scheme is a topological space together with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Smooth Scheme
In algebraic geometry, a smooth scheme over a field is a scheme which is well approximated by affine space near any point. Smoothness is one way of making precise the notion of a scheme with no singular points. A special case is the notion of a smooth variety over a field. Smooth schemes play the role in algebraic geometry of manifolds in topology. Definition First, let ''X'' be an affine scheme of finite type over a field ''k''. Equivalently, ''X'' has a closed immersion into affine space ''An'' over ''k'' for some natural number ''n''. Then ''X'' is the closed subscheme defined by some equations ''g''1 = 0, ..., ''g''''r'' = 0, where each ''gi'' is in the polynomial ring ''k'' 'x''1,..., ''x''''n'' The affine scheme ''X'' is smooth of dimension ''m'' over ''k'' if ''X'' has dimension at least ''m'' in a neighborhood of each point, and the matrix of derivatives (∂''g''''i''/∂''x''''j'') has rank at least ''n''−''m'' everywhere on ''X''. (It follows that ''X'' has dimension ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monsky–Washnitzer Cohomology
In algebraic geometry, Monsky–Washnitzer cohomology is a ''p''-adic cohomology theory defined for non-singular affine varieties over fields of positive characteristic ''p'' introduced by , who were motivated by the work of . The idea is to lift the variety to characteristic 0, and then take a suitable subalgebra of the algebraic de Rham cohomology Algebraic may refer to any subject related to algebra in mathematics and related branches like algebraic number theory and algebraic topology. The word algebra itself has several meanings. Algebraic may also refer to: * Algebraic data type, a data ... of . The construction was simplified by . Its extension to more general varieties is called rigid cohomology. References * * (letter to Atiyah, Oct. 14 1963) * * * {{DEFAULTSORT:Monsky-Washnitzer cohomology Algebraic geometry Cohomology theories Homological algebra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Variety
In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zero-locus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subvariety of an affine variety is called a quasi-affine variety. Some texts do not require a prime ideal, and call ''irreducible'' an algebraic variety defined by a prime ideal. This article refers to zero-loci of not necessarily prime ideals as affine algebraic sets. In some contexts, it is useful to distinguish the field in which the coefficients are considered, from the algebraically closed field (containing ) over which the zero-locus is considered (that is, the points of the affine variety are in ). In this case, the variety is said ''defined over'' , and the points of the variety that belong to are said '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rigid Analytic Space
In mathematics, a rigid analytic space is an analogue of a complex analytic space over a nonarchimedean field. Such spaces were introduced by John Tate in 1962, as an outgrowth of his work on uniformizing ''p''-adic elliptic curves with bad reduction using the multiplicative group. In contrast to the classical theory of ''p''-adic analytic manifolds, rigid analytic spaces admit meaningful notions of analytic continuation and connectedness. Definitions The basic rigid analytic object is the ''n''-dimensional unit polydisc, whose ring of functions is the Tate algebra T_n, made of power series in ''n'' variables whose coefficients approach zero in some complete nonarchimedean field ''k''. The Tate algebra is the completion of the polynomial ring in ''n'' variables under the Gauss norm (taking the supremum of coefficients), and the polydisc plays a role analogous to that of affine ''n''-space in algebraic geometry. Points on the polydisc are defined to be maximal ideals in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weil Conjectures
In mathematics, the Weil conjectures were highly influential proposals by . They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory. The conjectures concern the generating functions (known as local zeta functions) derived from counting points on algebraic varieties over finite fields. A variety over a finite field with elements has a finite number of rational points (with coordinates in the original field), as well as points with coordinates in any finite extension of the original field. The generating function has coefficients derived from the numbers of points over the extension field with elements. Weil conjectured that such ''zeta functions'' for smooth varieties are rational functions, satisfy a certain functional equation, and have their zeros in restricted places. The last two parts were consciously modelled on the Riemann zeta function, a kind of generating f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic Geometry
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic variety, algebraic varieties. In more abstract terms, arithmetic geometry can be defined as the study of scheme (mathematics), schemes of Finite morphism#Morphisms of finite type, finite type over the spectrum of a ring, spectrum of the ring of integers. Overview The classical objects of interest in arithmetic geometry are rational points: solution set, sets of solutions of a system of polynomial equations over number fields, finite fields, p-adic fields, or Algebraic function field, function fields, i.e. field (mathematics), fields that are not algebraically closed excluding the real numbers. Rational points can be directly characterized by height functions which measure their arithmetic complexity. The structure of algebraic varieties defined over ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]