Rigid Category
   HOME
*





Rigid Category
In category theory, a branch of mathematics, a rigid category is a monoidal category where every object is rigid, that is, has a dual ''X''* (the internal Hom 'X'', 1 and a morphism 1 → ''X'' ⊗ ''X''* satisfying natural conditions. The category is called right rigid or left rigid according to whether it has right duals or left duals. They were first defined (following Alexander Grothendieck) by Neantro Saavedra Rivano in his thesis on Tannakian categories. Definition There are at least two equivalent definitions of a rigidity. *An object ''X'' of a monoidal category is called left rigid if there is an object ''Y'' and morphisms \eta_X : \mathbf \to X \otimes Y and \epsilon_X : Y \otimes X \to \mathbf such that both compositions X ~ \xrightarrow ~ (X \otimes Y) \otimes X ~ \xrightarrow ~ X \otimes (Y \otimes X) ~ \xrightarrow ~ X Y ~ \xrightarrow ~ Y \otimes (X \otimes Y ) ~ \xrightarrow ~ (Y \otimes X) \otimes Y ~ \xrightarrow ~ Y are identities. A right rigid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monoidal Category
In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagrams commute. The ordinary tensor product makes vector spaces, abelian groups, ''R''-modules, or ''R''-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product. A rather different application, of which monoidal categories can be considered an abstractio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dual Object
In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space ''V''∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property. A category in which each object has a dual is called autonomous or rigid. The category of finite-dimensional vector spaces with the standard tensor product is rigid, while the category of all vector spaces is not. Motivation Let ''V'' be a finite-dimensional vector space over some field ''K''. The standard notion of a dual vector space ''V''∗ has the following property: for any ''K''-vector spaces ''U'' an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Internal Hom
In mathematics, specifically in category theory, hom-sets (i.e. sets of morphisms between objects) give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics. Formal definition Let ''C'' be a locally small category (i.e. a category for which hom-classes are actually sets and not proper classes). For all objects ''A'' and ''B'' in ''C'' we define two functors to the category of sets as follows: : The functor Hom(–, ''B'') is also called the ''functor of points'' of the object ''B''. Note that fixing the first argument of Hom naturally gives rise to a covariant functor and fixing the second argument naturally gives a contravariant functor. This is an artifact of the way in which one must compose the morphisms. The pair of functors Hom(''A'', –) and Hom(–, ''B'') are related in a natural manner. For any pair of morphisms ''f'' : ''B'' → ''B'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on. In category theory, ''morphism'' is a broadly similar idea: the mathematical objects involved need not be sets, and the relationships between them may be something other than maps, although the morphisms between the objects of a given category have to behave similarly to maps in that they have to admit an associative operation similar to function composition. A morphism in category theory is an abstraction of a homomorphism. The study of morphisms and of the structures (called "objects") over which they are defined is central to category theory. Much of the terminology of morphisms, as well as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tannakian Category
In mathematics, a Tannakian category is a particular kind of monoidal category ''C'', equipped with some extra structure relative to a given field ''K''. The role of such categories ''C'' is to approximate, in some sense, the category of linear representations of an algebraic group ''G'' defined over ''K''. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory. The name is taken from Tadao Tannaka and Tannaka–Krein duality, a theory about compact groups ''G'' and their representation theory. The theory was developed first in the school of Alexander Grothendieck. It was later reconsidered by Pierre Deligne, and some simplifications made. The pattern of the theory is that of Grothendieck's Galois theory, which is a theory about finite permutation representations of groups ''G'' which are profinite groups. The gist of the theory, which is rather elaborate in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Contravariant Functor
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a linguistic context; see function word. Definition Let ''C'' and ''D'' be categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D'', * associates each morphism f \colon X \to Y in ''C'' to a morphism F(f) \colon F(X) \to F(Y) in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pivotal Category
In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space ''V''∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property. A category in which each object has a dual is called autonomous or rigid. The category of finite-dimensional vector spaces with the standard tensor product is rigid, while the category of all vector spaces is not. Motivation Let ''V'' be a finite-dimensional vector space over some field ''K''. The standard notion of a dual vector space ''V''∗ has the following property: for any ''K''-vector spaces ''U'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Autonomous Category
In mathematics, an autonomous category is a monoidal category where dual objects exist. Definition A ''left'' (resp. ''right'') ''autonomous category'' is a monoidal category where every object has a left (resp. right) dual. An ''autonomous category'' is a monoidal category where every object has both a left and a right dual. Rigid category is a synonym for autonomous category. In a symmetric monoidal category, the existence of left duals is equivalent to the existence of right duals, categories of this kind are called (symmetric) compact closed categories. In categorial grammars, categories which are both left and right rigid are often called pregroups, and are employed in Lambek calculus, a non-symmetric extension of linear logic Linear logic is a substructural logic proposed by Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Monoidal Category
In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category (i.e. a category in which a "tensor product" \otimes is defined) such that the tensor product is symmetric (i.e. A\otimes B is, in a certain strict sense, naturally isomorphic to B\otimes A for all objects A and B of the category). One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field ''k,'' using the ordinary tensor product of vector spaces. Definition A symmetric monoidal category is a monoidal category (''C'', ⊗, ''I'') such that, for every pair ''A'', ''B'' of objects in ''C'', there is an isomorphism s_: A \otimes B \to B \otimes A that is natural in both ''A'' and ''B'' and such that the following diagrams commute: *The unit coherence: *: *The associativity coherence: *: *The inverse law: *: In the diagrams above, ''a'', ''l'' , ''r'' are the associativity isomorphism, the left unit isomorphism, and the right un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]