Real Tree
   HOME
*



picture info

Real Tree
In mathematics, real trees (also called \mathbb R-trees) are a class of metric spaces generalising simplicial trees. They arise naturally in many mathematical contexts, in particular geometric group theory and probability theory. They are also the simplest examples of Gromov hyperbolic spaces. Definition and examples Formal definition A metric space X is a real tree if it is a geodesic space where every triangle is a tripod. That is, for every three points x, y, \rho \in X there exists a point c = x \wedge y such that the geodesic segments rho,x rho,y/math> intersect in the segment rho,c/math> and also c \in ,y/math>. This definition is equivalent to X being a "zero-hyperbolic space" in the sense of Gromov (all triangles are "zero-thin"). Real trees can also be characterised by a topological property. A metric space X is a real tree if for any pair of points x, y \in X all topological embeddings \sigma of the segment ,1/math> into X such that \sigma(0) = x, \, \sigma(1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Metric Space
In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations (depending quantitatively on a nonnegative real number δ) between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called Gromov-hyperbolic groups. Definitions In this paragraph we give various definitions of a \delta-hyperbolic space. A metric space is said to be (Gromov-) hyperbolic if it is \delta-hyperbolic for some \delta > 0. Definition using the Gromov product Let (X,d) be a metric space. The Gromov product of two points y, z \in X with respect to a third one x \in X is defined by the formula: :(y,z)_x = \frac 1 2 \left( d(x, y) + d(x, z) - d(y, z) \right). Gromov's definition of a hyperbolic metric space is then as follows: X is \delta-hyperbolic if and only if all x,y,z,w \in X satisfy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ultralimit
In mathematics, an ultralimit is a geometric construction that assigns to a sequence of metric spaces ''Xn'' a limiting metric space. The notion of an ultralimit captures the limiting behavior of finite configurations in the spaces ''Xn'' and uses an ultrafilter to avoid the process of repeatedly passing to subsequences to ensure convergence. An ultralimit is a generalization of the notion of Gromov–Hausdorff convergence of metric spaces. Ultrafilters An ultrafilter ''ω'' on the set of natural numbers is a set of nonempty subsets of (whose inclusion function can be thought of as a measure) which is closed under finite intersection, upwards-closed, and which, given any subset ''X'' of , contains either ''X'' or . An ultrafilter ''ω'' on is ''non-principal'' if it contains no finite set. Limit of a sequence of points with respect to an ultrafilter Let ''ω'' be a non-principal ultrafilter on \mathbb N . If (x_n)_ is a sequence of points in a metric space (''X'',''d'') and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Probability
The ''Annals of Probability'' is a leading peer-reviewed probability journal published by the Institute of Mathematical Statistics, which is the main international society for researchers in the areas probability and statistics. The journal was started in 1973 as a continuation in part of the ''Annals of Mathematical Statistics'', which was split into the ''Annals of Statistics'' and this journal. In July 2021, the journal was ranked 7th in the field Probability & Statistics with Applications according to Google Scholar. It had an impact factor of 1.470 (as of 2010), according to the ''Journal Citation Reports''. The impact factor for 2018 is 2.085. Its CiteScore is 4.3, and SCImago Journal Rank is 3.184, both from 2020. Editors-in-Chief: Past and Present The following persons have been editor-in-chief of the journal: * Ronald Pyke (1972–1975) * Patrick Billingsley (1976–1978) * Richard M. Dudley (1979–1981) * Thomas M. Liggett (1985–1987) * Peter E. Ney (1988–1990) * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brownian Tree
In probability theory, the Brownian tree, or Aldous tree, or Continuum Random Tree (CRT) is a special case from random real trees which may be defined from a Brownian excursion. The Brownian tree was defined and studied by David Aldous in three articles published in 1991 and 1993. This tree has since then been generalized. This random tree has several equivalent definitions and constructions: using sub-trees generated by finitely many leaves, using a Brownian excursion, Poisson separating a straight line or as a limit of Galton-Watson trees. Intuitively, the Brownian tree is a binary tree whose nodes (or branching points) are dense in the tree; which is to say that for any distinct two points of the tree, there will always exist a node between them. It is a fractal object which can be approximated with computers or by physical processes with dendritic structures. Definitions The following definitions are different characterisations of a Brownian tree, they are taken from Ald ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Collage
Collage (, from the french: coller, "to glue" or "to stick together";) is a technique of art creation, primarily used in the visual arts, but in music too, by which art results from an assemblage of different forms, thus creating a new whole. (Compare with pastiche, which is a "pasting" together.) A collage may sometimes include magazine and newspaper clippings, ribbons, paint, bits of colored or handmade papers, portions of other artwork or texts, photographs and other found objects, glued to a piece of paper or canvas. The origins of collage can be traced back hundreds of years, but this technique made a dramatic reappearance in the early 20th century as an art form of novelty. The term ''Papier collé'' was coined by both Georges Braque and Pablo Picasso in the beginning of the 20th century when collage became a distinctive part of modern art. History Early precedents Techniques of collage were first used at the time of the invention of paper in China, around 20 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Local Maxima
In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given range (the ''local'' or ''relative'' extrema), or on the entire domain (the ''global'' or ''absolute'' extrema). Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions. As defined in set theory, the maximum and minimum of a set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ... are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum. Definition A real-valued Functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Local Minima
In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given range (the ''local'' or ''relative'' extrema), or on the entire domain (the ''global'' or ''absolute'' extrema). Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions. As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum. Definition A real-valued function ''f'' defined on a domain ''X'' has a global (or absolute) maximum point at ''x''∗, if for all ''x'' in ''X''. Similarly, the function has a global (or absolute) minimum point at ''x''∗, if for all ''x'' in ''X''. The value of the function at a m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quotient Space (topology)
In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space. Intuitively speaking, the points of each equivalence class are or "glued together" for forming a new topological space. For example, identifying the points of a sphere that belong to the same diameter produces the projective plane as a quotient space. Definition Let \left(X, \tau_X\right) be a topological space, and let \,\sim\, be an equivalence relation on X. The quotient set, Y = X / \sim\, is the set of equivalence classes o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]