Rademacher Distribution
   HOME
*





Rademacher Distribution
In probability theory and statistics, the Rademacher distribution (which is named after Hans Rademacher) is a discrete probability distribution where a random variate ''X'' has a 50% chance of being +1 and a 50% chance of being -1. A series (that is, a sum) of Rademacher distributed variables can be regarded as a simple symmetrical random walk where the step size is 1. Mathematical formulation The probability mass function of this distribution is : f(k) = \left\{\begin{matrix} 1/2 & \mbox {if }k=-1, \\ 1/2 & \mbox {if }k=+1, \\ 0 & \mbox {otherwise.}\end{matrix}\right. In terms of the Dirac delta function, as : f( k ) = \frac{ 1 }{ 2 } \left( \delta \left( k - 1 \right) + \delta \left( k + 1 \right) \right). Bounds on sums of independent Rademacher variables There are various results in probability theory around analyzing the sum of i.i.d. Rademacher variables, including concentration inequalities such as Bernstein inequalities as well as anti-concentration inequalit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


WikiProject Probability
A WikiProject, or Wikiproject, is a Wikimedia movement affinity group for contributors with shared goals. WikiProjects are prevalent within the largest wiki, Wikipedia, and exist to varying degrees within sister projects such as Wiktionary, Wikiquote, Wikidata, and Wikisource. They also exist in different languages, and translation of articles is a form of their collaboration. During the COVID-19 pandemic, CBS News noted the role of Wikipedia's WikiProject Medicine in maintaining the accuracy of articles related to the disease. Another WikiProject that has drawn attention is WikiProject Women Scientists, which was profiled by '' Smithsonian'' for its efforts to improve coverage of women scientists which the profile noted had "helped increase the number of female scientists on Wikipedia from around 1,600 to over 5,000". On Wikipedia Some Wikipedia WikiProjects are substantial enough to engage in cooperative activities with outside organizations relevant to the field at issue. For ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Khintchine Inequality
In mathematics, the Khintchine inequality, named after Aleksandr Khinchin and spelled in multiple ways in the Latin alphabet, is a theorem from probability, and is also frequently used in analysis. Heuristically, it says that if we pick N complex numbers x_1,\dots,x_N \in\mathbb, and add them together each multiplied by a random sign \pm 1 , then the expected value of the sum's modulus, or the modulus it will be closest to on average, will be not too far off from \sqrt. Statement Let \_^N be i.i.d. random variables with P(\varepsilon_n=\pm1)=\frac12 for n=1,\ldots, N, i.e., a sequence with Rademacher distribution. Let 0 and let x_1,\ldots,x_N\in \mathbb. Then : A_p \left( \sum_^N , x_n, ^2 \right)^ \leq \left(\operatorname \left, \sum_^N \varepsilon_n x_n\^p \right)^ \leq B_p \left(\sum_^N , x_n, ^2\right)^ for some constants A_p,B_p>0 depending only on p (see
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laplace Distribution
In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together along the abscissa, although the term is also sometimes used to refer to the Gumbel distribution. The difference between two independent identically distributed exponential random variables is governed by a Laplace distribution, as is a Brownian motion evaluated at an exponentially distributed random time. Increments of Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace distribution. Definitions Probability density function A random variable has a \textrm(\mu, b) distribution if its probability density function is :f(x\mid\mu,b) = \frac \exp \left( -\frac \right) \,\! Here, \mu is a location parameter and b > 0, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Distribution
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli,James Victor Uspensky: ''Introduction to Mathematical Probability'', McGraw-Hill, New York 1937, page 45 is the discrete probability distribution of a random variable which takes the value 1 with probability p and the value 0 with probability q = 1-p. Less formally, it can be thought of as a model for the set of possible outcomes of any single experiment that asks a yes–no question. Such questions lead to outcomes that are boolean-valued: a single bit whose value is success/ yes/true/ one with probability ''p'' and failure/no/ false/zero with probability ''q''. It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and ''p'' would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and ''p'' would be the probability of tails). In particular, unfair coins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vapnik–Chervonenkis Theory
Vapnik–Chervonenkis theory (also known as VC theory) was developed during 1960–1990 by Vladimir Vapnik and Alexey Chervonenkis. The theory is a form of computational learning theory, which attempts to explain the learning process from a statistical point of view. Introduction VC theory covers at least four parts (as explained in ''The Nature of Statistical Learning Theory''): *Theory of consistency of learning processes **What are (necessary and sufficient) conditions for consistency of a learning process based on the empirical risk minimization principle? *Nonasymptotic theory of the rate of convergence of learning processes **How fast is the rate of convergence of the learning process? *Theory of controlling the generalization ability of learning processes **How can one control the rate of convergence (the generalization ability) of the learning process? *Theory of constructing learning machines **How can one construct algorithms that can control the generalization abilit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numerical Optimization
Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems of sorts arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries. In the more general approach, an optimization problem consists of maximizing or minimizing a real function by systematically choosing input values from within an allowed set and computing the value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics. More generally, optimization includes finding "best available" values of some objective function given a define ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simultaneous Perturbation Stochastic Approximation
Simultaneous perturbation stochastic approximation (SPSA) is an algorithmic method for optimizing systems with multiple unknown parameters. It is a type of stochastic approximation algorithm. As an optimization method, it is appropriately suited to large-scale population models, adaptive modeling, simulation optimization, and atmospheric modeling. Many examples are presented at the SPSA website http://www.jhuapl.edu/SPSA. A comprehensive book on the subject is Bhatnagar et al. (2013). An early paper on the subject is Spall (1987) and the foundational paper providing the key theory and justification is Spall (1992). SPSA is a descent method capable of finding global minima, sharing this property with other methods as simulated annealing. Its main feature is the gradient approximation that requires only two measurements of the objective function, regardless of the dimension of the optimization problem. Recall that we want to find the optimal control u^* with loss function J(u): :u^* ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace (linear Algebra)
In linear algebra, the trace of a square matrix , denoted , is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of . The trace is only defined for a square matrix (). It can be proved that the trace of a matrix is the sum of its (complex) eigenvalues (counted with multiplicities). It can also be proved that for any two matrices and . This implies that similar matrices have the same trace. As a consequence one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the th row and th column of . The entries of can be real numbers or (more generally) complex numbers. The trace is not de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hutchinson Trace Estimator
Hutchinson may refer to: Places United States * Hutchinson, Kansas * South Hutchinson, Kansas * Hutchinson, Minnesota * Hutchinson, Pennsylvania * Hutchinson, West Virginia, in Logan County * Hutchinson, Marion County, West Virginia * Hutchinson County, South Dakota * Hutchinson County, Texas * Hutchinson Island (Florida) * Hutchinson Island South, Florida * Hutchinson River, a river in New York * Hutchinson River Parkway, running through Westchester County, New York, and the Bronx * Hutchinson Township, McLeod County, Minnesota Greenland * Hutchinson Glacier South Africa * Hutchinson, Northern Cape People * Hutchinson (surname) Companies *Hutchinson SA, worldwide manufacturer of sealing solutions, insulation, fluid transfer systems and bicycle tires for all industries * Hutchinson (publisher), a publisher of books Other uses *Hutchinson Encyclopedia *, US frigate *Hutchinson's teeth, a sign of congenital syphilis *Hutchinson's ratio, concerning size differen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Approximation
Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but only estimated via noisy observations. In a nutshell, stochastic approximation algorithms deal with a function of the form f(\theta) = \operatorname E_ (\theta,\xi) which is the expected value of a function depending on a random variable \xi . The goal is to recover properties of such a function f without evaluating it directly. Instead, stochastic approximation algorithms use random samples of F(\theta,\xi) to efficiently approximate properties of f such as zeros or extrema. Recently, stochastic approximations have found extensive applications in the fields of statistics and machine lea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normally Distributed And Uncorrelated Does Not Imply Independent
In probability theory, although simple examples illustrate that linear uncorrelatedness of two random variables does not in general imply their independence, it is sometimes mistakenly thought that it does imply that when the two random variables are normally distributed. This article demonstrates that assumption of normal distributions does not have that consequence, although the multivariate normal distribution, including the bivariate normal distribution, does. To say that the pair (X,Y) of random variables has a bivariate normal distribution means that every linear combination aX+bY of X and Y for constant (i.e. not random) coefficients a and b (not both equal to zero) has a univariate normal distribution. In that case, if X and Y are uncorrelated then they are independent. However, it is possible for two random variables X and Y to be so distributed jointly that each one alone is marginally normally distributed, and they are uncorrelated, but they are not independent; example ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]