Rubidium Sesquioxide
   HOME
*





Rubidium Sesquioxide
Rubidium sesquioxide is a chemical compound with the formula or . In terms of oxidation states, Rubidium in this compound has a nominal charge of +1, and the oxygen is a mixed peroxide () and superoxide () for a structural formula of . It has been studied theoretically as an example of a strongly correlated material. The compound was predicted to be a rare example of a ferromagnetic compound that is magnetic due to a p-block element, and a half-metal that was conducting in the minority spin band. However, while the material does have exotic magnetic behavior, experimental results instead showed an electrically insulating magnetically frustrated system. also displays a Verwey transition where charge ordering appears at 290 K. Rubidium sesquioxide can be prepared by reacting the peroxide and the superoxide : : It is initially discovered in 1907, and more thoroughly characterized in 1939. The compound crystallizes in a body-centered cubic form with the same crystal structure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Caesium Sesquioxide
Caesium sesquioxide is a chemical compound with the formula or . In terms of oxidation states, Caesium in this compound has a nominal charge of +1, and the oxygen is a mixed peroxide () and superoxide () for a structural formula of . Compared to the other caesium oxides, this phase is less well studied, but has been long present in the literature. It can be created by thermal decomposition of caesium superoxide at 290 °C. : The compound is often studied as an example of a Verwey type charge ordering transition at low temperatures. There were some theoretical suggestions that would be a ferromagnetic half metal, but along with the closely related rubidium sesquioxide, experimental results found a magnetically frustrated system. Below about 200 K, the structure changes to tegragonal symmetry. Electron paramagnetic resonance and nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superoxide
In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula . The systematic name of the anion is dioxide(1−). The reactive oxygen ion superoxide is particularly important as the product of the one-electron reduction of dioxygen , which occurs widely in nature. Molecular oxygen (dioxygen) is a diradical containing two unpaired electrons, and superoxide results from the addition of an electron which fills one of the two degenerate molecular orbitals, leaving a charged ionic species with a single unpaired electron and a net negative charge of −1. Both dioxygen and the superoxide anion are free radicals that exhibit paramagnetism. Superoxide was historically also known as "hyperoxide". Salts Superoxide forms salts with alkali metals and alkaline earth metals. The salts caesium superoxide (), rubidium superoxide (), potassium superoxide (), and sodium superoxide () are prepared by the reaction of with the respective alkali me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plutonium Carbide
Plutonium carbide comes in several stoichiometries (PuC and Pu2C3). It can be used as a nuclear fuel for nuclear reactors in conjunction with uranium carbide Uranium carbide, a carbide of uranium, is a hard refractory ceramic material. It comes in several stoichiometries (''x'' differs in ), such as uranium methanide (UC, CAS number 12070-09-6), uranium sesquicarbide (U2C3, CAS number 12076-62-9), a .... The mixture is also labeled as uranium-plutonium carbide (UPuC). References {{Plutonium compounds Carbides Plutonium compounds Rock salt crystal structure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Charge Ordering
Charge ordering (CO) is a (first- or second-order) phase transition occurring mostly in strongly correlated materials such as transition metal oxides or organic conductors. Due to the strong interaction between electrons, charges are localized on different sites leading to a disproportionation and an ordered superlattice. It appears in different patterns ranging from vertical to horizontal stripes to a checkerboard–like pattern , and it is not limited to the two-dimensional case. The charge order transition is accompanied by symmetry breaking and may lead to ferroelectricity. It is often found in close proximity to superconductivity and colossal magnetoresistance. This long range order phenomena was first discovered in magnetite (Fe3O4) by Verwey in 1939. He observed an increase of the electrical resistivity by two orders of magnitude at TCO=120K, suggesting a phase transition which is now well known as the Verwey transition. He was the first to propose the idea of an orderin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Verwey Transition
The Verwey transition is a low-temperature phase transition in the mineral magnetite associated with changes in its magnetic, electrical, and thermal properties. It typically occurs near a temperature of 120 K but is observed at a range of temperatures between 80 and 125 K, although the spread is generally tight around 118-120 K in natural magnetites. Upon warming through the Verwey transition temperature (), the magnetite crystal lattice changes from a monoclinic structure insulator to the metallic cubic inverse spinel structure that persists at room temperature. The phenomenon is named after Evert Verwey, a Dutch chemist who first recognized, in the 1940s, the connection between the structural transition and the changes in the physical properties of magnetite. This was the first metal-insulator transition to be found. The Verwey transition is near in temperature, but distinct from, a magnetic isotropic point in magnetite, at which the first magnetocrystalline anisotropy cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometrical Frustration
In condensed matter physics, the term geometrical frustration (or in short: frustration) refers to a phenomenon where atoms tend to stick to non-trivial positions or where, on a regular crystal lattice, conflicting inter-atomic forces (each one favoring rather simple, but different structures) lead to quite complex structures. As a consequence of the frustration in the geometry or in the forces, a plenitude of distinct ground states may result at zero temperature, and usual thermal ordering may be suppressed at higher temperatures. Much studied examples are amorphous materials, glasses, or dilute magnets. The term ''frustration'', in the context of magnetic systems, has been introduced by Gerard Toulouse in 1977. Frustrated magnetic systems had been studied even before. Early work includes a study of the Ising model on a triangular lattice with nearest-neighbor spins coupled antiferromagnetically, by G. H. Wannier, published in 1950. Related features occur in magnets with ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Half-metal
A half-metal is any substance that acts as a conductor to electrons of one spin orientation, but as an insulator or semiconductor to those of the opposite orientation. Although all half-metals are ferromagnetic (or ferrimagnetic), most ferromagnets are not half-metals. Many of the known examples of half-metals are oxides, sulfides, or Heusler alloys. In half-metals, the valence band for one spin orientation is partially filled while there is a gap in the density of states for the other spin orientation. This results in conducting behavior for only electrons in the first spin orientation. In some half-metals, the majority spin channel is the conducting one while in others the minority channel is. Half-metals were first described in 1983, as an explanation for the electrical properties of Mn-based Heusler alloys. Some notable half-metals are chromium(IV) oxide, magnetite, and lanthanum strontium manganite (LSMO), as well as chromium arsenide. Half-metals have attracted some i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Block (periodic Table)
A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-block, p-block, d-block, and f-block. The block names (s, p, d, and f) are derived from the spectroscopic notation for the value of an electron's azimuthal quantum number: sharp (0), principal (1), diffuse (2), or fundamental (3). Succeeding notations proceed in alphabetical order, as g, h, etc., though elements that would belong in such blocks have not yet been found. Characteristics There is an ''approximate'' correspondence between this nomenclature of blocks, based on electronic configuration, and sets of elements based on chemical properties. The s-block and p-block together are usually considered main-group elements, the d-block corresponds to the transition metals, and the f-block corresponds to the inner transitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ferromagnetic
Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials are the familiar metals noticeably attracted to a magnet, a consequence of their large magnetic permeability. Magnetic permeability describes the induced magnetization of a material due to the presence of an ''external'' magnetic field, and it is this temporarily induced magnetization inside a steel plate, for instance, which accounts for its attraction to the permanent magnet. Whether or not that steel plate acquires a permanent magnetization itself, depends not only on the strength of the applied field, but on the so-called coercivity of that material, which varies greatly among ferromagnetic materials. In physics, several different types of material magnetism are distinguished. Ferromagnetism (along with the similar effect ferrimagneti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strongly Correlated Material
Strongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-metallicity, and spin-charge separation. The essential feature that defines these materials is that the behavior of their electrons or spinons cannot be described effectively in terms of non-interacting entities. Theoretical models of the electronic (fermionic) structure of strongly correlated materials must include electronic (fermionic) correlation to be accurate. As of recently, the label quantum materials is also used to refer to strongly correlated materials, among others. Transition metal oxides Many transition metal oxides belong to this class which may be subdivided according to their behavior, ''e.g.'' high-Tc, spintronic materials, multiferroics, Mott insulators, spin Peierls materials, heavy fermion material ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peroxide
In chemistry, peroxides are a group of compounds with the structure , where R = any element. The group in a peroxide is called the peroxide group or peroxo group. The nomenclature is somewhat variable. The most common peroxide is hydrogen peroxide (), colloquially known simply as "peroxide". It is marketed as solutions in water at various concentrations. Many organic peroxides are known as well. In addition to hydrogen peroxide, some other major classes of peroxides are: * Peroxy acids, the peroxy derivatives of many familiar acids, examples being peroxymonosulfuric acid and peracetic acid, and their salts, one example of which is potassium peroxydisulfate. * Main group peroxides, compounds with the linkage (E = main group element). * Metal peroxides, examples being barium peroxide (), sodium peroxide () and zinc peroxide Zinc peroxide (ZnO2) appears as a bright yellow powder at room temperature. It was historically used as a surgical antiseptic. More recently zinc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rubidium Suboxide
Rubidium is the chemical element with the symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher than water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope 85Rb, and 28% is slightly radioactive 87Rb, with a half-life of 48.8 billion years—more than three times as long as the estimated age of the universe. German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed technique, flame spectroscopy. The name comes from the Latin word , meaning deep red, the color of its emission spectrum. Rubidium's compounds have various chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target for laser manipulation of atoms. Rubidium is not a known nutrient for any living organisms. However, r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]