HOME
*





Roper Resonance
The Roper resonance, also known as P11(1440) or N(1440)1/2+, is an unstable nucleon resonance with a mass of about 1,440 MeV/c2 and with a relatively wide full Breit-Wigner width Γ ≈ 300 MeV/c2. It contains three quarks (up (u) or down (d)) with total spin ''J'' = 1/2 and total isospin ''I'' = 1/2. In the quark model it is considered to be a radially excited three-quark state with radial quantum number ''N'' = 2 and positive parity. The Roper Resonance has been a subject of many studies because its mass is actually lower than three-quark states with radial quantum number ''N'' = 1. Only in the late 2000s was the lower-than-expected mass explained by theoretical calculations, revealing a quark core shielded by a dense cloud of mesons. Discovery The Roper resonance was discovered in 1963 by a computer fit of particle-scattering theory to large amounts of pion-nucleon scattering data. The analysis was done on computers at Lawrence Livermore National Laboratory for Ph.D. thesis wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relativistic Breit–Wigner Distribution
The relativistic Breit–Wigner distribution (after the 1936 nuclear resonance formula of Gregory Breit and Eugene Wigner) is a continuous probability distribution with the following probability density function, SePythia 6.4 Physics and Manual(page 98 onwards) for a discussion of the widths of particles in the PYTHIA manual. Note that this distribution is usually represented as a function of the squared energy. : f(E) = \frac~, where is a constant of proportionality, equal to : k = \frac ~~~~   with   ~~~~ \gamma=\sqrt ~. (This equation is written using natural units, .) It is most often used to model resonances (unstable particles) in high-energy physics. In this case, is the center-of-mass energy that produces the resonance, is the mass of the resonance, and Γ is the resonance width (or '' decay width''), related to its mean lifetime according to . (With units included, the formula is .) Usage The probability of producing the resonance at a given energy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nucleon
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were thought to be elementary particles, not made up of smaller parts. Now they are known to be composite particles, made of three quarks bound together by the strong interaction. The interaction between two or more nucleons is called internucleon interaction or nuclear force, which is also ultimately caused by the strong interaction. (Before the discovery of quarks, the term "strong interaction" referred to just internucleon interactions.) Nucleons sit at the boundary where particle physics and nuclear physics overlap. Particle physics, particularly quantum chromodynamics, provides the fundamental equations that describe the properties of quarks and of the strong interaction. These equations describe quantitatively how quarks can bind toget ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Baryons
Baryons are composite particles made of three quarks, as opposed to mesons, which are composite particles made of one quark and one antiquark. Baryons and mesons are both hadrons, which are particles composed solely of quarks or both quarks and antiquarks. The term ''baryon'' is derived from the Greek ''"βαρύς"'' (''barys''), meaning "heavy", because, at the time of their naming, it was believed that baryons were characterized by having greater masses than other particles that were classed as matter. Until a few years ago, it was believed that some experiments showed the existence of pentaquarks – baryons made of four quarks and one antiquark. Prior to 2006 the particle physics community as a whole did not view the existence of pentaquarks as likely.W.-M. Yao ''et al.'' (2006)Particle listings – Positive Theta/ref> On 13 July 2015, the LHCb collaboration at CERN reported results consistent with pentaquark states in the decay of bottom Lambda baryons (Λ).R. Aaij ''et al' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Argonne National Laboratory
Argonne National Laboratory is a science and engineering research United States Department of Energy National Labs, national laboratory operated by University of Chicago, UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest. Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi's work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States' nuclear navy, and a wide variety of similar projects. In 1994, the lab's nuclear mission ended, and today ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review Letters
''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. As also confirmed by various measurement standards, which include the ''Journal Citation Reports'' impact factor and the journal ''h''-index proposed by Google Scholar, many physicists and other scientists consider ''Physical Review Letters'' to be one of the most prestigious journals in the field of physics. ''According to Google Scholar, PRL is the journal with the 9th journal h-index among all scientific journals'' ''PRL'' is published as a print journal, and is in electronic format, online and CD-ROM. Its focus is rapid dissemination of significant, or notable, results of fundamental research on all topics related to all fields of physics. This is accomplished by rapid publication of short reports, called "Letters". Papers are published and available electronically one article at a time. When published in s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bottomness
In physics, bottomness (symbol ''B''′ using a prime as plain ''B'' is used already for baryon number) or beauty is a flavour quantum number reflecting the difference between the number of bottom antiquarks (''n'') and the number of bottom quarks (''n'') that are present in a particle: : B^\prime = -(n_b - n_) Bottom quarks have (by convention) a bottomness of −1 while bottom antiquarks have a bottomness of +1. The convention is that the flavour quantum number sign for the quark is the same as the sign of the electric charge (symbol ''Q'') of that quark (in this case, Q = −). As with other flavour-related quantum numbers, bottomness is preserved under strong and electromagnetic interactions, but not under weak interaction In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the stro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Charm (quantum Number)
Charm (symbol ''C'') is a flavour quantum number representing the difference between the number of charm quarks () and charm antiquarks () that are present in a particle: :C = n_\text - n_\ By convention, the sign of flavour quantum numbers agree with the sign of the electric charge carried by the quarks of corresponding flavour. The charm quark, which carries an electric charge (''Q'') of +, therefore carries a charm of +1. The charm antiquarks have the opposite charge (), and flavour quantum numbers (). As with any flavour-related quantum numbers, charm is preserved under strong and electromagnetic interaction, but not under weak interaction (see CKM matrix). For first-order weak decays, that is processes involving only one quark decay, charm can only vary by 1 (). Since first-order processes are more common than second-order processes (involving two quark decays), this can be used as an approximate "selection rule" for weak decays. See also * Quantum number References ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strangeness
In particle physics, strangeness ("''S''") is a property of particles, expressed as a quantum number, for describing decay of particles in strong and electromagnetic interactions which occur in a short period of time. The strangeness of a particle is defined as: S = -(n_\text - n_) where ''n'' represents the number of strange quarks () and ''n'' represents the number of strange antiquarks (). Evaluation of strangeness production has become an important tool in search, discovery, observation and interpretation of quark–gluon plasma (QGP). Strangeness is an excited state of matter and its decay is governed by CKM mixing. The terms ''strange'' and ''strangeness'' predate the discovery of the quark, and were adopted after its discovery in order to preserve the continuity of the phrase: strangeness of particles as −1 and anti-particles as +1, per the original definition. For all the quark flavour quantum numbers (strangeness, charm, topness and bottomness) the convention is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Speed Of Light
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit for the speed at which conventional matter or energy (and thus any signal carrying information) can travel through space. All forms of electromagnetic radiation, including visible light, travel at the speed of light. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and very sensitive measurements, their finite speed has noticeable effects. Starlight viewed on Earth left the stars many years ago, allowing humans to study the history of the universe by viewing distant objects. When communicating with distant space probes, it can take minutes to hours for signals to travel from Earth to the spacecraft and vice versa. In computing, the speed of light fixes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electron Volt
In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacuum. When used as a unit of energy, the numerical value of 1 eV in joules (symbol J) is equivalent to the numerical value of the charge of an electron in coulombs (symbol C). Under the 2019 redefinition of the SI base units, this sets 1 eV equal to the exact value Historically, the electronvolt was devised as a standard unit of measure through its usefulness in electrostatic particle accelerator sciences, because a particle with electric charge ''q'' gains an energy after passing through a voltage of ''V.'' Since ''q'' must be an integer multiple of the elementary charge ''e'' for any isolated particle, the gained energy in units of electronvolts conveniently equals that integer times the voltage. It is a common unit of energy within p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Particle Data Group
The Particle Data Group (or PDG) is an international collaboration of particle physicists that compiles and reanalyzes published results related to the properties of particles and fundamental interactions. It also publishes reviews of theoretical results that are phenomenologically relevant, including those in related fields such as cosmology. The PDG currently publishes the ''Review of Particle Physics'' and its pocket version, the ''Particle Physics Booklet'', which are printed biennially as books, and updated annually via the World Wide Web. In previous years, the PDG has published the ''Pocket Diary for Physicists'', a calendar with the dates of key international conferences and contact information of major high energy physics institutions, which is now discontinued. PDG also further maintains the standard numbering scheme for particles in event generators, in association with the event generator authors. ''Review of Particle Physics'' The ''Review of Particle Physics'' (former ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Delta Baryon
The Delta baryons (or baryons, also called Delta resonances) are a family of subatomic particle made of three up or down quarks (u or d quarks), the same constituent quarks that make up the more familiar protons and neutrons. Properties Four closely related baryons exist:  (constituent quarks: uuu),  (uud),  (udd), and  (ddd), which respectively carry an electric charge of +2  , +1 , 0 , and −1 . The  baryons have a mass of about ; their third component of isospin \; I_3 = \pm\tfrac ~\mathsf~ \pm\tfrac\;; and they are required to have an intrinsic spin of or higher (half-integer units). Ordinary nucleons (symbol , meaning either a proton or neutron), by contrast, have a mass of about , and both intrinsic spin and isospin of . The  (uud) and  (udd) particles are higher-mass spin-excitations of the proton (, uud) and neutron (, udd), respectively. The and , however, have no direct nucleon analogues: For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]