HOME
*





Rogers Polynomials
In mathematics, the Rogers polynomials, also called Rogers–Askey–Ismail polynomials and continuous q-ultraspherical polynomials, are a family of orthogonal polynomials introduced by in the course of his work on the Rogers–Ramanujan identities. They are ''q''-analogs of ultraspherical polynomials, and are the Macdonald polynomials for the special case of the ''A''1 affine root system . and discuss the properties of Rogers polynomials in detail. Definition The Rogers polynomials can be defined in terms of the ''q''-Pochhammer symbol and the basic hypergeometric series In mathematics, basic hypergeometric series, or ''q''-hypergeometric series, are ''q''-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series ''x'n'' is called ... by : C_n(x;\beta, q) = \frace^ _2\phi_1(q^,\beta;\beta^q^;q,q\beta^e^) where ''x'' = cos(''θ''). References * * * * * *{{Citation , last1=Rogers , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonality, orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by Pafnuty Chebyshev, P. L. Chebyshev and was pursued by Andrey Markov, A. A. Markov and Thomas Joannes Stieltjes, T. J. Stieltjes. They appear in a wide variety of fields: numerical analysis (Gaussian quadrature, quadrature rules), probability theory, representation theory (of Lie group, Lie groups, quantum group, quantum groups, and re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rogers–Ramanujan Identities
In mathematics, the Rogers–Ramanujan identities are two identities related to basic hypergeometric series and partition (number theory), integer partitions. The identities were first discovered and proved by , and were subsequently rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913. Ramanujan had no proof, but rediscovered Rogers's paper in 1917, and they then published a joint new proof . independently rediscovered and proved the identities. Definition The Rogers–Ramanujan identities are :G(q) = \sum_^\infty \frac = \frac =1+ q +q^2 +q^3 +2q^4+2q^5 +3q^6+\cdots and :H(q) =\sum_^\infty \frac = \frac =1+q^2 +q^3 +q^4+q^5 +2q^6+\cdots . Here, (a;q)_n denotes the q-Pochhammer symbol. Combinatorial interpretation Consider the following: * \frac is the generating function for partitions with exactly n parts such that adjacent parts have difference at least 2. * \frac is the generating function for partitions such that each part is congrue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ultraspherical Polynomials
In mathematics, Gegenbauer polynomials or ultraspherical polynomials ''C''(''x'') are orthogonal polynomials on the interval minus;1,1with respect to the weight function (1 − ''x''2)''α''–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer. Characterizations File:Plot of the Gegenbauer polynomial C n^(m)(x) with n=10 and m=1 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg, Plot of the Gegenbauer polynomial C n^(m)(x) with n=10 and m=1 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D File:Mplwp gegenbauer Cn05a1.svg, Gegenbauer polynomials with ''α''=1 File:Mplwp gegenbauer Cn05a2.svg, Gegenbauer polynomials with ''α''=2 File:Mplwp gegenbauer Cn05a3.svg, Gegenbauer polynomials with ''α''=3 File:Gegenbauer polynomials.gif, An animation showing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Macdonald Polynomials
In mathematics, Macdonald polynomials ''P''λ(''x''; ''t'',''q'') are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable ''t'', but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable ''t'' can be replaced by several different variables ''t''=(''t''1,...,''t''''k''), one for each of the ''k'' orbits of roots in the affine root system. The Macdonald polynomials are polynomials in ''n'' variables ''x''=(''x''1,...,''x''''n''), where ''n'' is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Affine Root System
In mathematics, an affine root system is a root system of affine-linear functions on a Euclidean space. They are used in the classification of affine Lie algebras and superalgebras, and semisimple ''p''-adic algebraic groups, and correspond to families of Macdonald polynomials. The reduced affine root systems were used by Kac and Moody in their work on Kac–Moody algebras. Possibly non-reduced affine root systems were introduced and classified by and (except that both these papers accidentally omitted the Dynkin diagram ). Definition Let ''E'' be an affine space and ''V'' the vector space of its translations. Recall that ''V'' acts faithfully and transitively on ''E''. In particular, if u,v \in E, then it is well defined an element in ''V'' denoted as u-v which is the only element w such that v+w=u. Now suppose we have a scalar product (\cdot,\cdot) on ''V''. This defines a metric on ''E'' as d(u,v)=\vert(u-v,u-v)\vert. Consider the vector space ''F'' of affine-linear fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-Pochhammer Symbol
In mathematical area of combinatorics, the ''q''-Pochhammer symbol, also called the ''q''-shifted factorial, is the product (a;q)_n = \prod_^ (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^), with (a;q)_0 = 1. It is a ''q''-analog of the Pochhammer symbol (x)_n = x(x+1)\dots(x+n-1), in the sense that \lim_ \frac = (x)_n. The ''q''-Pochhammer symbol is a major building block in the construction of ''q''-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series. Unlike the ordinary Pochhammer symbol, the ''q''-Pochhammer symbol can be extended to an infinite product: (a;q)_\infty = \prod_^ (1-aq^k). This is an analytic function of ''q'' in the interior of the unit disk, and can also be considered as a formal power series in ''q''. The special case \phi(q) = (q;q)_\infty=\prod_^\infty (1-q^k) is known as Euler's function, and is important in combinatorics, number theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Basic Hypergeometric Series
In mathematics, basic hypergeometric series, or ''q''-hypergeometric series, are ''q''-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series ''x''''n'' is called hypergeometric if the ratio of successive terms ''x''''n''+1/''x''''n'' is a rational function of ''n''. If the ratio of successive terms is a rational function of ''q''''n'', then the series is called a basic hypergeometric series. The number ''q'' is called the base. The basic hypergeometric series _2\phi_1(q^,q^;q^;q,x) was first considered by . It becomes the hypergeometric series F(\alpha,\beta;\gamma;x) in the limit when base q =1. Definition There are two forms of basic hypergeometric series, the unilateral basic hypergeometric series φ, and the more general bilateral basic hypergeometric series ψ. The unilateral basic hypergeometric series is defined as :\;_\phi_k \left begin a_1 & a_2 & \ldots & a_ \\ b_1 & b_2 & \ldots & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonality, orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by Pafnuty Chebyshev, P. L. Chebyshev and was pursued by Andrey Markov, A. A. Markov and Thomas Joannes Stieltjes, T. J. Stieltjes. They appear in a wide variety of fields: numerical analysis (Gaussian quadrature, quadrature rules), probability theory, representation theory (of Lie group, Lie groups, quantum group, quantum groups, and re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]