HOME
*





Rice's Formula
In probability theory, Rice's formula counts the average number of times an ergodic stationary process ''X''(''t'') per unit time crosses a fixed level ''u''. Adler and Taylor describe the result as "one of the most important results in the applications of smooth stochastic processes." The formula is often used in engineering. History The formula was published by Stephen O. Rice in 1944, having previously been discussed in his 1936 note entitled "Singing Transmission Lines." Formula Write ''D''''u'' for the number of times the ergodic stationary stochastic process ''x''(''t'') takes the value ''u'' in a unit of time (i.e. ''t'' ∈  ,1. Then Rice's formula states that ::\mathbb E(D_u) = \int_^\infty , x', p(u,x') \, \mathrmx' where ''p''(''x'',''x''') is the joint probability density of the ''x''(''t'') and its mean-square derivative ''x(''t''). If the process ''x''(''t'') is a Gaussian process and ''u'' = 0 then the formula simplifies significantly to give ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ergodic Process
In physics, statistics, econometrics and signal processing, a stochastic process is said to be in an ergodic regime if an observable's ensemble average equals the time average. In this regime, any collection of random samples from a process must represent the average statistical properties of the entire regime. Conversely, a process that is not in ergodic regime is said to be in non-ergodic regime. Specific definitions One can discuss the ergodicity of various statistics of a stochastic process. For example, a wide-sense stationary process X(t) has constant mean :\mu_X= E (t)/math>, and autocovariance :r_X(\tau) = E X(t)-\mu_X) (X(t+\tau)-\mu_X)/math>, that depends only on the lag \tau and not on time t. The properties \mu_X and r_X(\tau) are ''ensemble averages'' (calculated over all possible sample functions X), not time averages. The process X(t) is said to be mean-ergodicPapoulis, p.428 or mean-square ergodic in the first momentPorat, p.14 if the time average estima ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stationary Process
In mathematics and statistics, a stationary process (or a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose unconditional joint probability distribution does not change when shifted in time. Consequently, parameters such as mean and variance also do not change over time. If you draw a line through the middle of a stationary process then it should be flat; it may have 'seasonal' cycles, but overall it does not trend up nor down. Since stationarity is an assumption underlying many statistical procedures used in time series analysis, non-stationary data are often transformed to become stationary. The most common cause of violation of stationarity is a trend in the mean, which can be due either to the presence of a unit root or of a deterministic trend. In the former case of a unit root, stochastic shocks have permanent effects, and the process is not mean-reverting. In the latter case of a deterministic trend, the process is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stephen O
Stephen or Steven is a common English first name. It is particularly significant to Christians, as it belonged to Saint Stephen ( grc-gre, Στέφανος ), an early disciple and deacon who, according to the Book of Acts, was stoned to death; he is widely regarded as the first martyr (or "protomartyr") of the Christian Church. In English, Stephen is most commonly pronounced as ' (). The name, in both the forms Stephen and Steven, is often shortened to Steve or Stevie. The spelling as Stephen can also be pronounced which is from the Greek original version, Stephanos. In English, the female version of the name is Stephanie. Many surnames are derived from the first name, including Stephens, Stevens, Stephenson, and Stevenson, all of which mean "Stephen's (son)". In modern times the name has sometimes been given with intentionally non-standard spelling, such as Stevan or Stevon. A common variant of the name used in English is Stephan ; related names that have found some curr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Process
In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those (infinitely many) random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space. The concept of Gaussian processes is named after Carl Friedrich Gauss because it is based on the notion of the Gaussian distribution (normal distribution). Gaussian processes can be seen as an infinite-dimensional generalization of multivariate normal distributions. Gaussian processes are useful in statistical modelling, benefiting from properties inherited from the normal distribution. For example, if a random process is modelled as a Gaussian process, the distribution ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Autocorrelation
Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a periodic signal obscured by noise, or identifying the missing fundamental frequency in a signal implied by its harmonic frequencies. It is often used in signal processing for analyzing functions or series of values, such as time domain signals. Different fields of study define autocorrelation differently, and not all of these definitions are equivalent. In some fields, the term is used interchangeably with autocovariance. Unit root processes, trend-stationary processes, autoregressive processes, and moving average processes are specific forms of processes with autocorrelation. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Excursion Probability
In probability theory, an excursion probability is the probability that a stochastic process surpasses a given value in a fixed time period. It is the probability :\mathbb P \left\. Numerous approximation methods for the situation where ''u'' is large and f(''t'') is a Gaussian process have been proposed such as Rice's formula In probability theory, Rice's formula counts the average number of times an ergodic stationary process ''X''(''t'') per unit time crosses a fixed level ''u''. Adler and Taylor describe the result as "one of the most important results in the applic .... First-excursion probabilities can be used to describe deflection to a critical point experienced by structures during "random loadings, such as earthquakes, strong gusts, hurricanes, etc." References Stochastic processes {{probability-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]