Reynolds Stress
In fluid dynamics, the Reynolds stress is the component of the total stress tensor in a fluid obtained from the averaging operation over the NavierâStokes equations to account for turbulent fluctuations in fluid momentum. Definition The velocity field of a flow can be split into a mean part and a fluctuating part using Reynolds decomposition. We write :u_i = \overline + u_i',\, with \mathbf(\mathbf,t) being the flow velocity vector having components u_i in the x_i coordinate direction (with x_i denoting the components of the coordinate vector \mathbf). The mean velocities \overline are determined by either time averaging, spatial averaging or ensemble averaging, depending on the flow under study. Further u'_i denotes the fluctuating (turbulence) part of the velocity. We consider a homogeneous fluid, whose density ''Ï'' is taken to be a constant. For such a fluid, the components ''Ï''ij'' of the Reynolds stress tensor are defined as: :\tau'_ \equiv \rho\,\overline,\, Anothe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fluid Dynamics
In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluidsâ liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation. Fluid dynamics offers a systematic structureâwhich underlies these practical disciplinesâthat embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution to a fluid dynamics problem typically involves the calculation of various properties of the fluid, such as flow velocity, pressure, density, and temperature, as functions of space and time. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of the compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K-epsilon Turbulence Model
K-epsilon (k-Δ) turbulence model is the most common model used in computational fluid dynamics (CFD) to simulate mean flow characteristics for turbulent flow conditions. It is a two equation model that gives a general description of turbulence by means of two transport equations (partial differential equations, PDEs). The original impetus for the K-epsilon model was to improve the mixing-length model, as well as to find an alternative to algebraically prescribing turbulent length scales in moderate to high complexity flows. *The first transported variable is the turbulent kinetic energy (k). *The second transported variable is the rate of dissipation of turbulent kinetic energy (Δ). Principle Unlike earlier turbulence models, k-Δ model focuses on the mechanisms that affect the turbulent kinetic energy. The mixing length model lacks this kind of generality. The underlying assumption of this model is that the turbulent viscosity is isotropic, in other words, the ratio between Reyn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kinetic Theory Of Gases
Kinetic (Ancient Greek: ÎșÎŻÎœÎ·ÏÎčÏ âkinesisâ, movement or to move) may refer to: * Kinetic theory, describing a gas as particles in random motion * Kinetic energy, the energy of an object that it possesses due to its motion Art and entertainment * Kinetic art, a form of art involving mechanical and/or random movement, including optical illusions. * ''Kinetic'', the 13th episode of the first season of the TV series ''Smallville'' * ''Kinetic'' (comics), a comic by Allan Heinberg and Kelley Pucklett * "Kinetic" (song), a song by Radiohead Companies * Kinetic Engineering Limited, Indian automotive manufacturer * Kinetic Group, Australian-based public transport company Technology * "Kinetic", Seiko's trademark for its automatic quartz technology * The ''Kinetic camera system'' by Birt Acres (1854â1918), photographer and film pioneer * Kinetic projectile Military terminology * Kinetic military action See also * * * Kinetics (other) * Dynamics (disambiguatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Outer Product
In linear algebra, the outer product of two coordinate vector In linear algebra, a coordinate vector is a representation of a vector as an ordered list of numbers (a tuple) that describes the vector in terms of a particular ordered basis. An easy example may be a position such as (5, 2, 1) in a 3-dimensiona ...s is a Matrix (mathematics), matrix. If the two vectors have dimensions ''n'' and ''m'', then their outer product is an ''n'' Ă ''m'' matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra. The outer product contrasts with: * The dot product (a special case of "inner product"), which takes a pair of coordinate vectors as input and produces a Scalar (mathematics), scalar * The Kronecker product, which takes a pair of matrices as input and produces a block matrix * Matrix multiplication, Standard mat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
BBGKY Hierarchy
In statistical physics, the BBGKY hierarchy (BogoliubovâBornâGreenâKirkwoodâYvon hierarchy, sometimes called Bogoliubov hierarchy) is a set of equations describing the dynamics of a system of a large number of interacting particles. The equation for an ''s''-particle distribution function (probability density function) in the BBGKY hierarchy includes the (''s'' + 1)-particle distribution function, thus forming a coupled chain of equations. This formal theoretic result is named after Nikolay Bogolyubov, Max Born, Herbert S. Green, John Gamble Kirkwood, and Jacques Yvon. Formulation The evolution of an ''N''-particle system in absence of quantum fluctuations is given by the Liouville equation for the probability density function f_N = f_N(\mathbf_1 \dots \mathbf_N, \mathbf_1 \dots \mathbf_N, t) in 6''N''-dimensional phase space (3 space and 3 momentum coordinates per particle) : \frac + \sum_^N \frac \frac + \sum_^N \mathbf_i \frac = 0, where \mathbf_i, \mathbf_ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Moment Closure
In probability theory, moment closure is an approximation method used to estimate moments of a stochastic process. Introduction Typically, differential equations describing the ''i-''th moment will depend on the ''(i + 1)''-st moment. To use moment closure, a level is chosen past which all cumulants are set to zero. This leaves a resulting closed system of equations which can be solved for the moments. The approximation is particularly useful in models with a very large state space, such as stochastic population models. History The moment closure approximation was first used by Goodman and Whittle who set all third and higher-order cumulants to be zero, approximating the population distribution with a normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ... ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Turbulence Kinetic Energy
In fluid dynamics, turbulence kinetic energy (TKE) is the mean kinetic energy per unit mass associated with eddies in turbulent flow. Physically, the turbulence kinetic energy is characterised by measured root-mean-square (RMS) velocity fluctuations. In the Reynolds-averaged Navier Stokes equations, the turbulence kinetic energy can be calculated based on the closure method, i.e. a turbulence model. Generally, the TKE is defined to be half the sum of the variances (square of standard deviations) of the velocity components: k = \frac12 \left(\, \overline + \overline + \overline \,\right), where the turbulent velocity component is the difference between the instantaneous and the average velocity u' = u - \overline, whose mean and variance are \overline = \frac \int_0^T (u(t) - \overline) \, dt = 0 and \overline = \frac\int_0^T (u(t) - \overline)^2 \, dt \geq 0 , respectively. TKE can be produced by fluid shear, friction or buoyancy, or through external forcing at low-frequency ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kinematic Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of the compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zhou Peiyuan
Zhou Peiyuan (; August 28, 1902 â November 24, 1993) was a Chinese theoretical physicist and politician. He served as president of Peking University, and was an academician of the Chinese Academy of Sciences (CAS). Born in Yixing, Jiangsu, China, Zhou graduated from Tsinghua University in 1924. Then he went to the United States and obtained a bachelor's degree from University of Chicago in Spring of 1926, and a master's degree at the end of the same year. In 1928, he obtained his doctorate degree from California Institute of Technology under Eric Temple Bell with thesis ''The Gravitational Field of a Body with Rotational Symmetry in Einstein's Theory of Gravitation''. In 1936, he studied general relativity under Albert Einstein in the Institute for Advanced Study in Princeton, New Jersey. He did his post-doc researches in quantum mechanics at University of Leipzig in Germany and Swiss Federal Institute of Technology Zurich. He was a professor of physics at Peking University, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Product Rule
In calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as (u \cdot v)' = u ' \cdot v + u \cdot v' or in Leibniz's notation as \frac (u\cdot v) = \frac \cdot v + u \cdot \frac. The rule may be extended or generalized to products of three or more functions, to a rule for higher-order derivatives of a product, and to other contexts. Discovery Discovery of this rule is credited to Gottfried Leibniz, who demonstrated it using differentials. (However, J. M. Child, a translator of Leibniz's papers, argues that it is due to Isaac Barrow.) Here is Leibniz's argument: Let ''u''(''x'') and ''v''(''x'') be two differentiable functions of ''x''. Then the differential of ''uv'' is : \begin d(u\cdot v) & = (u + du)\cdot (v + dv) - u\cdot v \\ & = u\cdot dv + v\cdot du + du\cdot dv. \end Since the term ''du''·''dv'' is "negligi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Substantial Derivative
In continuum mechanics, the material derivative describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum deformation. For example, in fluid dynamics, the velocity field is the flow velocity, and the quantity of interest might be the temperature of the fluid. In which case, the material derivative then describes the temperature change of a certain fluid parcel with time, as it flows along its pathline (trajectory). Other names There are many other names for the material derivative, including: *advective derivative *convective derivative *derivative following the motion *hydrodynamic derivative *Lagrangian derivative *particle derivative *substantial derivative *substantive derivative *Stokes derivative *total derivative, although the material derivative ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |