HOME
*





Resonator Mode
In the resonator mode, the Plasma (physics), plasma density does not exceed the critical plasma density, critical density. A standing electromagnetic wave, which is confined by a resonator cavity, penetrates the plasma and sustains it in the regions of highest field intensity. The geometry of this region determines the spatial distribution of the plasma. Plasmas excited in resonator mode are less resistant against detuning, for instance by the insertion of electric probes (Langmuir probes) or electrically conducting samples compared to surface-wave-sustained mode, surface-wave plasmas. There, the high plasma density better shields disturbing potentials. Waves in plasmas {{plasma-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasma (physics)
Plasma ()πλάσμα
, Henry George Liddell, Robert Scott, ''A Greek English Lexicon'', on Perseus
is one of the four fundamental states of matter. It contains a significant portion of charged particles – ions and/or s. The presence of these charged particles is what primarily sets plasma apart from the other fundamental states of matter. It is the most abundant form of ordi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Critical Plasma Density
In plasma physics, an electromagnetic electron wave is a wave in a plasma which has a magnetic field component and in which primarily the electrons oscillate. In an unmagnetized plasma, an electromagnetic electron wave is simply a light wave modified by the plasma. In a magnetized plasma, there are two modes perpendicular to the field, the O and X modes, and two modes parallel to the field, the R and L waves. Waves in an unmagnetized plasma Langmuir Wave The Langmuir wave is a purely longitudinal wave, that is, the wave vector is in the same direction as the E-field. It is an electrostatic wave, thus it doesn't have an oscillating magnetic field. A plasma consists of charged particles which react to electric fields, in contrast with dielectric matter. When electrons in a uniform, homogeneous plasma are perturbed from their equilibrium position, a charge separation occurs creating an electric field which acts as restoring force on the electrons. Since electrons have inertia the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electromagnetic Wave
In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays. All of these waves form part of the electromagnetic spectrum. Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields. Depending on the frequency of oscillation, different wavelengths of electromagnetic spectrum are produced. In a vacuum, electromagnetic waves travel at the speed of light, commonly denoted ''c''. In homogeneous, isotropic media, the oscillations of the two fields are perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave. The position of an electromagnetic wave within the electromagnetic spectrum can be characterized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Resonator Cavity
A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical (including acoustic). Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use acoustic resonators that produce sound waves of specific tones. Another example is quartz crystals used in electronic devices such as radio transmitters and quartz watches to produce oscillations of very precise frequency. A cavity resonator is one in which waves exist in a hollow space inside the device. In electronics and radio, microwave cavities consisting of hollow metal boxes are used in microwave transmitters, receivers and test equipment to control frequency, in place of the tuned circuits which are used at lower frequ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Langmuir Probe
A Langmuir probe is a device used to determine the electron temperature, electron density, and electric potential of a plasma. It works by inserting one or more electrodes into a plasma, with a constant or time-varying electric potential between the various electrodes or between them and the surrounding vessel. The measured currents and potentials in this system allow the determination of the physical properties of the plasma. ''I-V'' characteristic of the Debye sheath The beginning of Langmuir probe theory is the ''I–V'' characteristic of the Debye sheath, that is, the current density flowing to a surface in a plasma as a function of the voltage drop across the sheath. The analysis presented here indicates how the electron temperature, electron density, and plasma potential can be derived from the ''I–V'' characteristic. In some situations a more detailed analysis can yield information on the ion density (n_i), the ion temperature T_i, or the electron energy distribution ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Surface-wave-sustained Mode
A surface-wave-sustained discharge is a plasma that is excited by propagation of electromagnetic surface waves. Surface wave plasma sources can be divided into two groups depending upon whether the plasma generates part of its own waveguide by ionisation or not. The former is called a self-guided plasma. The surface wave mode allows the generation of uniform high-frequency-excited plasmas in volumes whose lateral dimensions extend over several wavelengths of the electromagnetic wave, e.g. for microwaves of 2.45 GHz in vacuum the wavelength amounts to 12.2 cm. Theory For a long time, microwave plasma sources without a magnetic field were not considered suitable for the generation of high density plasmas. Electromagnetic waves cannot propagate in over-dense plasmas. The wave is reflected at the plasma surface due to the skin effect and becomes an evanescent wave. Its penetration depth corresponds to the skin depth \delta, which can be approximated by :\delta \sime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]