HOME
*





Reed–Muller Code
Reed–Muller codes are error-correcting codes that are used in wireless communications applications, particularly in deep-space communication. Moreover, the proposed 5G standard relies on the closely related polar codes for error correction in the control channel. Due to their favorable theoretical and mathematical properties, Reed–Muller codes have also been extensively studied in theoretical computer science. Reed–Muller codes generalize the Reed–Solomon codes and the Walsh–Hadamard code. Reed–Muller codes are linear block codes that are locally testable, locally decodable, and list decodable. These properties make them particularly useful in the design of probabilistically checkable proofs. Traditional Reed–Muller codes are binary codes, which means that messages and codewords are binary strings. When ''r'' and ''m'' are integers with 0 ≤ ''r'' ≤ ''m'', the Reed–Muller code with parameters ''r'' and ''m'' is denoted as RM(''r'', ''m''). When ask ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Irving S
Irving may refer to: People *Irving (name), including a list of people with the name Fictional characters * Irving, the main character's love interest in Cathy (comic strip) * Lloyd Irving, the main protagonist in the ''Tales of Symphonia'' video game Places Canada * Irving Nature Park, a park in Saint John, N.B. United States *Irving, California, former name of Irvington, California * Irving, Illinois * Irving, Iowa *Irving (Duluth), Minnesota *Irving, New York *Irving, Texas *Irving, Wisconsin, a town **Irving (community), Wisconsin, an unincorporated community *Irving Park, Chicago, Illinois * Irving Township, Montgomery County, Illinois * Irving Township, Michigan * Irving Township, Minnesota * Lake Irving, a lake in Minnesota Companies * Irving Group of Companies, Canadian conglomerate based in Saint John, New Brunswick, controlled by the Irving family, including: ** J. D. Irving, a conglomerate with holdings in forestry, pulp and paper, tissue, newsprint, building su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Degree
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer. For a univariate polynomial, the degree of the polynomial is simply the highest exponent occurring in the polynomial. The term order has been used as a synonym of ''degree'' but, nowadays, may refer to several other concepts (see order of a polynomial (other)). For example, the polynomial 7x^2y^3 + 4x - 9, which can also be written as 7x^2y^3 + 4x^1y^0 - 9x^0y^0, has three terms. The first term has a degree of 5 (the sum of the powers 2 and 3), the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial has a degree of 5, which is the highest degree of any term. To determine the degree of a polynomial that is not in standard form, such as (x+1)^2 - (x-1)^2, one can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dual Code
In coding theory, the dual code of a linear code :C\subset\mathbb_q^n is the linear code defined by :C^\perp = \ where :\langle x, c \rangle = \sum_^n x_i c_i is a scalar product. In linear algebra terms, the dual code is the annihilator of ''C'' with respect to the bilinear form \langle\cdot\rangle. The dimension of ''C'' and its dual always add up to the length ''n'': :\dim C + \dim C^\perp = n. A generator matrix for the dual code is the parity-check matrix for the original code and vice versa. The dual of the dual code is always the original code. Self-dual codes A self-dual code is one which is its own dual. This implies that ''n'' is even and dim ''C'' = ''n''/2. If a self-dual code is such that each codeword's weight is a multiple of some constant c > 1, then it is of one of the following four types: *Type I codes are binary self-dual codes which are not doubly even. Type I codes are always even (every codeword has even Hamming weight). *Type II codes are binar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Block Code
In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of ''all'' block codes in a unified way. Such limitations often take the form of ''bounds'' that relate different parameters of the block code to each other, such as its rate and its ability to detect and correct errors. Examples of block codes are Reed–Solomon codes, Hamming codes, Hadamard codes, Expander codes, Golay codes, and Reed–Muller codes. These examples also belong to the class of linear codes, and hence they are called linear block codes. More particularly, these codes are known as algebraic block codes, or cyclic block codes, because they can be generated using boolean polynomia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Majority Logic Decoding
In error detection and correction, majority logic decoding is a method to decode repetition codes, based on the assumption that the largest number of occurrences of a symbol was the transmitted symbol. Theory In a binary alphabet made of 0,1, if a (n,1) repetition code is used, then each input bit is mapped to the code word as a string of n-replicated input bits. Generally n=2t + 1, an odd number. The repetition codes can detect up to /2/math> transmission errors. Decoding errors occur when more than these transmission errors occur. Thus, assuming bit-transmission errors are independent, the probability of error for a repetition code is given by P_e = \sum_^ \epsilon^ (1-\epsilon)^{(n-k)}, where \epsilon is the error over the transmission channel. Algorithm Assumption: the code word is (n,1), where n=2t+1, an odd number. * Calculate the d_H Hamming weight of the repetition code. * if d_H \le t , decode code word to be all 0's * if d_H \ge t+1 , decode code word to be all 1's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamming Weight
The Hamming weight of a string is the number of symbols that are different from the zero-symbol of the alphabet used. It is thus equivalent to the Hamming distance from the all-zero string of the same length. For the most typical case, a string of bits, this is the number of 1's in the string, or the digit sum of the binary representation of a given number and the ''ℓ''₁ norm of a bit vector. In this binary case, it is also called the population count, popcount, sideways sum, or bit summation. History and usage The Hamming weight is named after Richard Hamming although he did not originate the notion. The Hamming weight of binary numbers was already used in 1899 by James W. L. Glaisher to give a formula for the number of odd binomial coefficients in a single row of Pascal's triangle. Irving S. Reed introduced a concept, equivalent to Hamming weight in the binary case, in 1954. Hamming weight is used in several disciplines including information theory, coding theor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bar Product (coding Theory)
In information theory, the bar product of two linear codes ''C''2 ⊆ ''C''1 is defined as :C_1 \mid C_2 = \, where (''a'' ,  ''b'') denotes the concatenation of ''a'' and ''b''. If the code words in ''C''1 are of length ''n'', then the code words in ''C''1 ,  ''C''2 are of length 2''n''. The bar product is an especially convenient way of expressing the Reed–Muller RM (''d'', ''r'') code in terms of the Reed–Muller codes RM (''d'' − 1, ''r'') and RM (''d'' − 1, ''r'' − 1). The bar product is also referred to as the ,  ''u'' ,  ''u''+''v'' , construction or (''u'' ,  ''u'' + ''v'') construction. Properties Rank The rank of the bar product is the sum of the two ranks: :\operatorname(C_1\mid C_2) = \operatorname(C_1) + \operatorname(C_2)\, Proof Let \ be a basis for C_1 and let \ be a basis for C_2. Then th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its ''ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined. In different settings, hyperplanes may have different properties. For instance, a hyperplane of an -dimensional affine space is a flat subset with dimension and it separates the space into two half spaces. While a hyperplane of an -dimensional projective space does not have this property. The difference in dimension between a subspace and its ambient space is known as the codimension of with respect to . Therefore, a necessary and sufficient condition for to be a hyperplane in is for to have codimension one in . Technical description In geometry, a hyperplane of an ''n''-dimensi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wedge Product
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width..''McGraw-Hill Concise Encyclopedia of Science & Technology'', Third Ed., Sybil P. Parker, ed., McGraw-Hill, Inc., 1992, p. 2041. Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle. The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported. The wedge simply transports energy in the form of friction and collects it to the pointy end, consequently breaking the item. History Wedges have exi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Indicator Vector
In mathematics, the indicator vector or characteristic vector or incidence vector of a subset ''T'' of a Set (mathematics), set ''S'' is the vector x_T := (x_s)_ such that x_s = 1 if s \in T and x_s = 0 if s \notin T. If ''S'' is countable set, countable and its elements are numbered so that S = \, then x_T = (x_1,x_2,\ldots,x_n) where x_i = 1 if s_i \in T and x_i = 0 if s_i \notin T. To put it more simply, the indicator vector of ''T'' is a vector with one element for each element in ''S'', with that element being one if the corresponding element of ''S'' is in ''T'', and zero if it is not. An indicator vector is a special (countable) case of an indicator function. Example If ''S'' is the set of natural numbers \mathbb, and ''T'' is some subset of the natural numbers, then the indicator vector is naturally a single point in the Cantor space: that is, an infinite sequence of 1's and 0's, indicating membership, or lack thereof, in ''T''. Such vectors commonly occur in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Generator Matrix
In coding theory, a generator matrix is a matrix whose rows form a basis for a linear code. The codewords are all of the linear combinations of the rows of this matrix, that is, the linear code is the row space of its generator matrix. Terminology If G is a matrix, it generates the codewords of a linear code ''C'' by : w=sG where w is a codeword of the linear code ''C'', and s is any input vector. Both w and s are assumed to be row vectors. A generator matrix for a linear , k, dq-code has format k \times n, where ''n'' is the length of a codeword, ''k'' is the number of information bits (the dimension of ''C'' as a vector subspace), ''d'' is the minimum distance of the code, and ''q'' is size of the finite field, that is, the number of symbols in the alphabet (thus, ''q'' = 2 indicates a binary code, etc.). The number of redundant bits is denoted by r = n - k. The ''standard'' form for a generator matrix is, : G = \begin I_k , P \end, where I_k is the k \times k identity ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Code
In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types. Linear codes allow for more efficient encoding and decoding algorithms than other codes (cf. syndrome decoding). Linear codes are used in forward error correction and are applied in methods for transmitting symbols (e.g., bits) on a communications channel so that, if errors occur in the communication, some errors can be corrected or detected by the recipient of a message block. The codewords in a linear block code are blocks of symbols that are encoded using more symbols than the original value to be sent. A linear code of length ''n'' transmits blocks containing ''n'' symbols. For example, the ,4,3 Hamming code is a linear binary code which represents 4-bit messages using 7-bit codewords. Two distinct c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]