Reduced Word
In group theory, a word is any written product of group elements and their inverses. For example, if ''x'', ''y'' and ''z'' are elements of a group ''G'', then ''xy'', ''z''−1''xzz'' and ''y''−1''zxx''−1''yz''−1 are words in the set . Two different words may evaluate to the same value in ''G'', or even in every group. Words play an important role in the theory of free groups and presentations, and are central objects of study in combinatorial group theory. Definitions Let ''G'' be a group, and let ''S'' be a subset of ''G''. A word in ''S'' is any expression of the form :s_1^ s_2^ \cdots s_n^ where ''s''1,...,''sn'' are elements of ''S'', called generators, and each ''εi'' is ±1. The number ''n'' is known as the length of the word. Each word in ''S'' represents an element of ''G'', namely the product of the expression. By convention, the unique Uniqueness of identity element and inverses identity element can be represented by the empty word, which is the unique word ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclic Permutation
In mathematics, and in particular in group theory, a cyclic permutation (or cycle) is a permutation of the elements of some set ''X'' which maps the elements of some subset ''S'' of ''X'' to each other in a cyclic fashion, while fixing (that is, mapping to themselves) all other elements of ''X''. If ''S'' has ''k'' elements, the cycle is called a ''k''-cycle. Cycles are often denoted by the list of their elements enclosed with parentheses, in the order to which they are permuted. For example, given ''X'' = , the permutation (1, 3, 2, 4) that sends 1 to 3, 3 to 2, 2 to 4 and 4 to 1 (so ''S'' = ''X'') is a 4-cycle, and the permutation (1, 3, 2) that sends 1 to 3, 3 to 2, 2 to 1 and 4 to 4 (so ''S'' = and 4 is a fixed element) is a 3-cycle. On the other hand, the permutation that sends 1 to 3, 3 to 1, 2 to 4 and 4 to 2 is not a cyclic permutation because it separately permutes the pairs and . The set ''S'' is called the orbit of the cycle. Every permutation on finitely many elemen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatorial Group Theory
In mathematics, combinatorial group theory is the theory of free groups, and the concept of a presentation of a group by generators and relations. It is much used in geometric topology, the fundamental group of a simplicial complex having in a natural and geometric way such a presentation. A very closely related topic is geometric group theory, which today largely subsumes combinatorial group theory, using techniques from outside combinatorics besides. It also comprises a number of algorithmically insoluble problems, most notably the word problem for groups; and the classical Burnside problem. History See for a detailed history of combinatorial group theory. A proto-form is found in the 1856 icosian calculus of William Rowan Hamilton, where he studied the icosahedral symmetry group via the edge graph of the dodecahedron. The foundations of combinatorial group theory were laid by Walther von Dyck, student of Felix Klein Christian Felix Klein (; 25 April 1849 – 22 Ju ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Word Problem For Groups
In mathematics, especially in the area of abstract algebra known as combinatorial group theory, the word problem for a finitely generated group ''G'' is the algorithmic problem of deciding whether two words in the generators represent the same element. More precisely, if ''A'' is a finite set of generators for ''G'' then the word problem is the membership problem for the formal language of all words in ''A'' and a formal set of inverses that map to the identity under the natural map from the free monoid with involution on ''A'' to the group ''G''. If ''B'' is another finite generating set for ''G'', then the word problem over the generating set ''B'' is equivalent to the word problem over the generating set ''A''. Thus one can speak unambiguously of the decidability of the word problem for the finitely generated group ''G''. The related but different uniform word problem for a class ''K'' of recursively presented groups is the algorithmic problem of deciding, given as input a pres ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Word Problem (mathematics)
In computational mathematics, a word problem is the problem of deciding whether two given expressions are equivalent with respect to a set of rewriting identities. A prototypical example is the word problem for groups, but there are many other instances as well. A deep result of computational theory is that answering this question is in many important cases undecidable. Background and motivation In computer algebra one often wishes to encode mathematical expressions using an expression tree. But there are often multiple equivalent expression trees. The question naturally arises of whether there is an algorithm which, given as input two expressions, decides whether they represent the same element. Such an algorithm is called a ''solution to the word problem''. For example, imagine that x,y,z are symbols representing real numbers - then a relevant solution to the word problem would, given the input (x \cdot y)/z \mathrel (x/z)\cdot y, produce the output EQUAL, and similarly pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Form For Free Groups And Free Product Of Groups
In mathematics, particularly in combinatorial group theory, a normal form for a free group over a set of generators or for a free product of groups is a representation of an element by a simpler element, the element being either in the free group or free products of group. In case of free group these simpler elements are reduced words and in the case of free product of groups these are reduced sequences. The precise definitions of these are given below. As it turns out, for a free group and for the free product of groups, there exists a unique normal form i.e each element is representable by a simpler element and this representation is unique. This is the Normal Form Theorem for the free groups and for the free product of groups. The proof here of the Normal Form Theorem follows the idea of Artin and van der Waerden. Normal Form for Free Groups Let G be a free group with generating set S. Each element in G is represented by a word w=a_1\cdots a_n, where a_j\in S^, 1\leqslant j\l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Direct Product Of Groups
In mathematics, specifically in group theory, the direct product is an operation that takes two groups and and constructs a new group, usually denoted . This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics. In the context of abelian groups, the direct product is sometimes referred to as the direct sum, and is denoted G \oplus H. Direct sums play an important role in the classification of abelian groups: according to the fundamental theorem of finite abelian groups, every finite abelian group can be expressed as the direct sum of cyclic groups. Definition Given groups (with operation ) and (with operation ), the direct product is defined as follows: The resulting algebraic object satisfies the axioms for a group. Specifically: ;Associativity: The binary operation on is associative. ;Identity: The direct product has an identity element, namely , where is the identity e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dihedral Group
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, or refers to the symmetries of the -gon, a group of order . In abstract algebra, refers to this same dihedral group. This article uses the geometric convention, . Definition Elements A regular polygon with n sides has 2n different symmetries: n rotational symmetries and n reflection symmetries. Usually, we take n \ge 3 here. The associated rotations and reflections make up the dihedral group \mathrm_n. If n is odd, each axis of symmetry connects the midpoint of one side to the opposite vertex. If n is even, there are n/2 axes of symmetry connecting the midpoints of opposite sides and n/2 axes of symmetry connecting oppo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Klein Four-group
In mathematics, the Klein four-group is a Group (mathematics), group with four elements, in which each element is Involution (mathematics), self-inverse (composing it with itself produces the identity) and in which composing any two of the three non-identity elements produces the third one. It can be described as the symmetry group of a non-square rectangle (with the three non-identity elements being horizontal and vertical reflection and 180-degree rotation), as the group of bitwise operation, bitwise exclusive or operations on two-bit binary values, or more abstract algebra, abstractly as , the Direct product of groups, direct product of two copies of the cyclic group of Order (group theory), order 2. It was named ''Vierergruppe'' (meaning four-group) by Felix Klein in 1884. It is also called the Klein group, and is often symbolized by the letter V or as K4. The Klein four-group, with four elements, is the smallest group that is not a cyclic group. There is only one other group ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Form (mathematics)
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and which allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a ''unique'' representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness. The canonical form of a positive integer in decimal representation is a finite sequence of digits that does not begin with zero. More generally, for a class of objects on which an equivalence relation is defined, a canonical form consists in the choice of a specific object in each class. For example: *Jordan normal form is a canonical form for matrix similarity. *The row echelon form is a canonical form, when one consid ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup of ''G'' if the restriction of ∗ to is a group operation on ''H''. This is often denoted , read as "''H'' is a subgroup of ''G''". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group ''G'' is a subgroup ''H'' which is a proper subset of ''G'' (that is, ). This is often represented notationally by , read as "''H'' is a proper subgroup of ''G''". Some authors also exclude the trivial group from being proper (that is, ). If ''H'' is a subgroup of ''G'', then ''G'' is sometimes called an overgroup of ''H''. The same definitions apply more generally when ''G'' is an arbitrary semigroup, but this article will only deal with subgroups of groups. Subgroup tests Suppose th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |