HOME
*





Reciprocity Theorem (other)
Reciprocity theorem may refer to: *Quadratic reciprocity, a theorem about modular arithmetic **Cubic reciprocity **Quartic reciprocity **Artin reciprocity ** Weil reciprocity for algebraic curves * Frobenius reciprocity theorem for group representations *Stanley's reciprocity theorem for generating functions * Reciprocity (engineering), theorems relating signals and the resulting responses ** including Reciprocity (electrical networks), a theorem relating voltages and currents in a network *Reciprocity (electromagnetism), theorems relating sources and the resulting fields in classical electromagnetism *Tellegen's theorem, a theorem about the transfer function of passive networks *Reciprocity law for Dedekind sums *Betti's theorem in linear elasticity See also *Reciprocity (other) Reciprocity may refer to: Law and trade * Reciprocity (Canadian politics), free trade with the United States of America ** Reciprocal trade agreement, entered into in order to reduce (or elimin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadratic Reciprocity
In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is: This law, together with its #q_=_±1_and_the_first_supplement, supplements, allows the easy calculation of any Legendre symbol, making it possible to determine whether there is an integer solution for any quadratic equation of the form x^2\equiv a \bmod p for an odd prime p; that is, to determine the "perfect squares" modulo p. However, this is a constructivism (mathematics), non-constructive result: it gives no help at all for finding a ''specific'' solution; for this, other methods are required. For example, in the case p\equiv 3 \bmod 4 using Euler's criterion one can give an explicit formula for the "square roots" modulo p of a quadratic residue a, namely, :\pm a^ indeed, :\left (\pm a^ \right )^2=a^=a\cdot a^\equiv a\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cubic Reciprocity
Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence ''x''3 ≡ ''p'' (mod ''q'') is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if ''p'' and ''q'' are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence ''x''3 ≡ ''p'' (mod ''q'') is solvable if and only if ''x''3 ≡ ''q'' (mod ''p'') is solvable. History Sometime before 1748 Euler made the first conjectures about the cubic residuacity of small integers, but they were not published until 1849, after his death. Gauss's published works mention cubic residues and reciprocity three times: there is one result pertaining to cubic residues in the Disquisitiones Arithmeticae (1801). In the introduction to the fifth and sixth proofs of quadratic reciprocity (1818) he said that he was publishing these proofs because their techniques ( Gauss's lemma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quartic Reciprocity
Quartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence ''x''4 ≡ ''p'' (mod ''q'') is solvable; the word "reciprocity" comes from the form of some of these theorems, in that they relate the solvability of the congruence ''x''4 ≡ ''p'' (mod ''q'') to that of ''x''4 ≡ ''q'' (mod ''p''). History Euler made the first conjectures about biquadratic reciprocity. Gauss published two monographs on biquadratic reciprocity. In the first one (1828) he proved Euler's conjecture about the biquadratic character of 2. In the second one (1832) he stated the biquadratic reciprocity law for the Gaussian integers and proved the supplementary formulas. He saidGauss, BQ, § 67 that a third monograph would be forthcoming with the proof of the general theorem, but it never appeared. Jacobi presented proofs in his Königsberg lectures of 1836–37. The first published proofs were by Eise ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artin Reciprocity
Artin may refer to: * Artin (name), a surname and given name, including a list of people with the name ** Artin, a variant of Harutyun Harutyun ( hy, Հարություն and in Western Armenian Յարութիւն) also spelled Haroutioun, Harutiun and its variants Harout, Harut and Artin is a common male Armenian name; it means resurrection in Armenian. People with the name H ..., an Armenian given name * 15378 Artin, a main-belt asteroid See also

{{disambiguation, surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weil Reciprocity For Algebraic Curves
In mathematics, the Weil reciprocity law is a result of André Weil holding in the function field ''K''(''C'') of an algebraic curve ''C'' over an algebraically closed field ''K''. Given functions ''f'' and ''g'' in ''K''(''C''), i.e. rational functions on ''C'', then :''f''((''g'')) = ''g''((''f'')) where the notation has this meaning: (''h'') is the divisor of the function ''h'', or in other words the formal sum of its zeroes and poles counted with multiplicity; and a function applied to a formal sum means the product (with multiplicities, poles counting as a negative multiplicity) of the values of the function at the points of the divisor. With this definition there must be the side-condition, that the divisors of ''f'' and ''g'' have disjoint support (which can be removed). In the case of the projective line, this can be proved by manipulations with the resultant of polynomials. To remove the condition of disjoint support, for each point ''P'' on ''C'' a ''local symbol'' :(' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stanley's Reciprocity Theorem
In combinatorial mathematics, Stanley's reciprocity theorem, named after MIT mathematician Richard P. Stanley, states that a certain functional equation is satisfied by the generating function of any rational cone (defined below) and the generating function of the cone's interior. Definitions A rational cone is the set of all ''d''-tuples :(''a''1, ..., ''a''''d'') of nonnegative integers satisfying a system of inequalities :M\left begina_1 \\ \vdots \\ a_d\end\right\geq \left begin0 \\ \vdots \\ 0\end\right/math> where ''M'' is a matrix of integers. A ''d''-tuple satisfying the corresponding ''strict'' inequalities, i.e., with ">" rather than "≥", is in the ''interior'' of the cone. The generating function of such a cone is :F(x_1,\dots,x_d)=\sum_ x_1^\cdots x_d^. The generating function ''F''int(''x''1, ..., ''x''''d'') of the interior of the cone is defined in the same way, but one sums over ''d''-tuples in the interior rather than in the whole cone. It can be s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reciprocity (engineering)
Reciprocity in linear systems is the principle that a response Rab, measured at a location (and direction if applicable) a, when the system has an excitation signal applied at a location (and direction if applicable) b, is exactly equal to Rba which is the response at location b, when that same excitation is applied at a. This applies for all frequencies of the excitation signal. If Hab is the transfer function between a and b then Hab = Hba, if the system is linear. In the special case of a modal analysis this is known as Maxwell's reciprocity theorem. In electromagnetism the concept is known as Lorentz reciprocity In classical electromagnetism, reciprocity refers to a variety of related theorems involving the interchange of time- harmonic electric current densities (sources) and the resulting electromagnetic fields in Maxwell's equations for time-invarian ..., a special case of which is the reciprocity theorem of electrical networks. The reciprocity principle is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reciprocity (electrical Networks)
Reciprocity in electrical networks is a property of a circuit that relates voltages and currents at two points. The reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first. The reciprocity theorem is valid for almost all passive networks. The reciprocity theorem is a feature of a more general principle of reciprocity in electromagnetism. Description If a current, I_\text , injected into port A produces a voltage, V_\text , at port B and I_\text injected into port B produces V_\text at port A, then the network is said to be reciprocal. Equivalently, reciprocity can be defined by the dual situation; applying voltage, V_\text , at port A producing current I_\text at port B and V_\text at port B producing current I_\text at port A. In general, passive networks are reciprocal. Any network that consists entirely of ideal capacitances, inductance ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reciprocity (electromagnetism)
In classical electromagnetism, reciprocity refers to a variety of related theorems involving the interchange of time-harmonic electric current densities (sources) and the resulting electromagnetic fields in Maxwell's equations for time-invariant linear media under certain constraints. Reciprocity is closely related to the concept of symmetric operators from linear algebra, applied to electromagnetism. Perhaps the most common and general such theorem is Lorentz reciprocity (and its various special cases such as Rayleigh-Carson reciprocity), named after work by Hendrik Lorentz in 1896 following analogous results regarding sound by Lord Rayleigh and light by Helmholtz (Potton, 2004). Loosely, it states that the relationship between an oscillating current and the resulting electric field is unchanged if one interchanges the points where the current is placed and where the field is measured. For the specific case of an electrical network, it is sometimes phrased as the statement that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tellegen's Theorem
Tellegen's theorem is one of the most powerful theorems in network theory. Most of the energy distribution theorems and extremum principles in network theory can be derived from it. It was published in 1952 by Bernard Tellegen. Fundamentally, Tellegen's theorem gives a simple relation between magnitudes that satisfy Kirchhoff's circuit laws, Kirchhoff's laws of electrical circuit theory. The Tellegen theorem is applicable to a multitude of network systems. The basic assumptions for the systems are the conservation of flow of intensive and extensive properties, extensive quantities (Kirchhoff's current law, KCL) and the uniqueness of the potentials at the network nodes (Kirchhoff's voltage law, KVL). The Tellegen theorem provides a useful tool to analyze complex network systems including electrical circuits, Biological network, biological and metabolic networks, pipeline transport networks, and chemical process networks. The theorem Consider an arbitrary Lumped-element model, lu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dedekind Sums
In mathematics, Dedekind sums are certain sums of products of a sawtooth function, and are given by a function ''D'' of three integer variables. Dedekind introduced them to express the functional equation of the Dedekind eta function. They have subsequently been much studied in number theory, and have occurred in some problems of topology. Dedekind sums have a large number of functional equations; this article lists only a small fraction of these. Dedekind sums were introduced by Richard Dedekind in a commentary on fragment XXVIII of Bernhard Riemann's collected papers. Definition Define the sawtooth function (\!( \, )\!) : \mathbb \rightarrow \mathbb as :(\!(x)\!)=\begin x-\lfloor x\rfloor - 1/2, &\mboxx\in\mathbb\setminus\mathbb;\\ 0,&\mboxx\in\mathbb. \end We then let :D: \mathbb^2\times (\mathbb-\)\to \mathbb be defined by :D(a,b;c)=\sum_ \left(\!\!\left( \frac \right)\!\!\right) \! \left(\!\!\left( \frac \right)\!\!\right), the terms on the right being the Dedekind su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]