Ramsey Interferometry
Ramsey interferometry, also known as the separated oscillating fields method, is a form of particle interferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of particles. It was developed in 1949 by Norman Ramsey, who built upon the ideas of his mentor, Isidor Isaac Rabi, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the S.I. definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration.Deutsch, Ivan. ''Quantum Optics I, PHYS 566, at the University of New Mexico.'' Problem Set 3 and Solutions. Fall 2013. A more modern method, known as Ramsey–Bordé interferometry uses a Ramsey configuration and was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bordé's main idea was to use atomic recoil to create a beam splitt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nuclear Magnetic Resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. Nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. NM ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Norman Foster Ramsey, Jr
Norman Foster Ramsey Jr. (August 27, 1915 – November 4, 2011) was an American physicist who was awarded the 1989 Nobel Prize in Physics, for the invention of the separated oscillatory field method, which had important applications in the construction of atomic clocks. A physics professor at Harvard University for most of his career, Ramsey also held several posts with such government and international agencies as NATO and the United States Atomic Energy Commission. Among his other accomplishments are helping to found the United States Department of Energy's Brookhaven National Laboratory and Fermilab. Early life Norman Foster Ramsey Jr. was born in Washington, D.C., on August 27, 1915, to Minna Bauer Ramsey, an instructor at the University of Kansas, and Norman Foster Ramsey, a 1905 graduate of the United States Military Academy at West Point and an officer in the Ordnance Department who rose to the rank of brigadier general during World War II, commanding the Rock Island Ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prentice Hall
Prentice Hall was an American major educational publisher owned by Savvas Learning Company. Prentice Hall publishes print and digital content for the 6–12 and higher-education market, and distributes its technical titles through the Safari Books Online e-reference service. History On October 13, 1913, law professor Charles Gerstenberg and his student Richard Ettinger founded Prentice Hall. Gerstenberg and Ettinger took their mothers' maiden names, Prentice and Hall, to name their new company. Prentice Hall became known as a publisher of trade books by authors such as Norman Vincent Peale; elementary, secondary, and college textbooks; loose-leaf information services; and professional books. Prentice Hall acquired the training provider Deltak in 1979. Prentice Hall was acquired by Gulf+Western in 1984, and became part of that company's publishing division Simon & Schuster. S&S sold several Prentice Hall subsidiaries: Deltak and Resource Systems were sold to National Educatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isidor Isaac Rabi
Isidor Isaac Rabi (; born Israel Isaac Rabi, July 29, 1898 – January 11, 1988) was an American physicist who won the Nobel Prize in Physics in 1944 for his discovery of nuclear magnetic resonance, which is used in magnetic resonance imaging. He was also one of the first scientists in the United States to work on the cavity magnetron, which is used in microwave radar and microwave ovens. Born into a traditional Polish-Jewish family in Rymanów, Galicia, Rabi came to the United States as an infant and was raised in New York's Lower East Side. He entered Cornell University as an electrical engineering student in 1916, but soon switched to chemistry. Later, he became interested in physics. He continued his studies at Columbia University, where he was awarded his doctorate for a thesis on the magnetic susceptibility of certain crystals. In 1927, he headed for Europe, where he met and worked with many of the finest physicists of the time. In 1929, Rabi returned to the United ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Christian Bordé
Christian Bordé (15 March 1943 - 30 August 2023) was a French physicist. He has been a member of the French Academy of Sciences since December 2008. Biography Emeritus research director at the CNRS, he is known for his work in the field of ultra-high resolution laser spectroscopy. He invented and developed saturation spectroscopy, which he used to study many new and fundamental effects in molecular physics. His name is attached to the design of a whole class of atomic interferometers based on the recoil effect, which make it possible to produce optical clocks, measure atomic masses and probe the properties of space-time. In particular, he demonstrated that these interferometers allowed very accurate measurement of the fields of inertia. The proximity of his work to the field of metrology has led it to preside on several occasions, on behalf of the French Academy of Sciences, over the meetings of the General Conference on Weights and Measures, the executive organ of the Metr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Larmor Precession
In physics, Larmor precession (named after Joseph Larmor) is the precession of the magnetic moment of an object about an external magnetic field. The phenomenon is conceptually similar to the precession of a tilted classical gyroscope in an external torque-exerting gravitational field. Objects with a magnetic moment also have angular momentum and effective internal electric current proportional to their angular momentum; these include electrons, protons, other fermions, many atomic and nuclear systems, as well as classical macroscopic systems. The external magnetic field exerts a torque on the magnetic moment, :\vec = \vec\times\vec = \gamma\vec\times\vec, where \vec is the torque, \vec is the magnetic dipole moment, \vec is the angular momentum vector, \vec is the external magnetic field, \times symbolizes the cross product, and \gamma is the gyromagnetic ratio which gives the proportionality constant between the magnetic moment and the angular momentum. The angular momentum ve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rabi Cycle
In physics, the Rabi cycle (or Rabi flop) is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an oscillatory driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi. A two-level system is one that has two possible energy levels. These two levels are a ground state with lower energy and an excited state with higher energy. If the energy levels are not degenerate (i.e. not having equal energies), the system can absorb a quantum of energy and transition from the ground state to the "excited" state. When an atom (or some other two-level system) is illuminated by a coherent b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rotating Wave Approximation
The rotating-wave approximation is an approximation used in atom optics and magnetic resonance. In this approximation, terms in a Hamiltonian that oscillate rapidly are neglected. This is a valid approximation when the applied electromagnetic radiation is near resonance with an atomic transition, and the intensity is low. Explicitly, terms in the Hamiltonians that oscillate with frequencies \omega_L + \omega_0 are neglected, while terms that oscillate with frequencies \omega_L - \omega_0 are kept, where \omega_L is the light frequency, and \omega_0 is a transition frequency. The name of the approximation stems from the form of the Hamiltonian in the interaction picture, as shown below. By switching to this picture the evolution of an atom due to the corresponding atomic Hamiltonian is absorbed into the system ket, leaving only the evolution due to the interaction of the atom with the light field to consider. It is in this picture that the rapidly oscillating terms mentioned prev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bloch Sphere
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch. Quantum mechanics is mathematically formulated in Hilbert space or projective Hilbert space. The pure states of a quantum system correspond to the one-dimensional subspaces of the corresponding Hilbert space (and the "points" of the projective Hilbert space). For a two-dimensional Hilbert space, the space of all such states is the complex projective line \mathbb^1. This is the Bloch sphere, which can be mapped to the Riemann sphere. The Bloch sphere is a unit 2-sphere, with antipodal points corresponding to a pair of mutually orthogonal state vectors. The north and south poles of the Bloch sphere are typically chosen to correspond to the standard basis vectors , 0\rangle and , 1\rangle, respectively, which in turn might correspond e.g. to the spin-up and spin-down states of an electr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rabi Bloch
Rabi may refer to: Places * Rábí, a castle in the Czech Republic * Rabí, a village in the Czech Republic * Räbi, a village in Estonia * Rabi, Panchthar, a village development committee in Nepal * Rabi Island, a volcanic island in northern Fiji People * RABI (artist) (David Torres; born 1984), American visual artist *Abd al-Malik ibn Rabi, a narrator of hadith *Al-Rabi ibn Abu al-Huqayq (fl. 622), Jewish poet of the Banu al-Nadir in Medina * Al-Rabi ibn Khuthaym (died c. 682), tabi'i ascetic of Kufa *Amir Hossein Rabii (died 1979), Iranian Air Force commander *Ashur-rabi II (1013 BC–972 BC), Assyrian king *Isidor Isaac Rabi (1898–1988), Nobel Prize-winning Austrian-American physicist *Kenana ibn al-Rabi (7th century), Jewish tribal leader and opponent of Muhammad *Rabi'ah ibn al-Harith (c.566-c.640), sahaba (companion) of Muhammad * Rabia Balkhi (10th century), Persian poet *Rabi Ghosh (1931–1997), Indian actor *Rabi ibn Sabra, a narrator of hadith *Rabi ibn Sabih, Isla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Second
The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of Units ( SI) is more precise:The second ..is defined by taking the fixed numerical value of the caesium frequency, Δ''ν''Cs, the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be when expressed in the unit Hz, which is equal to s−1. This current definition was adopted in 1967 when it became feasible to define the second based on fundamental properties of nature with caesium clocks. Because the speed of Earth's rotation varies and is slowing ever so slightly, a leap second is added at irregular intervals to civil time to keep clocks in sync with Earth's rotation. Uses Analog clocks and watches often ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |