Radix Economy
In mathematics and computer science, optimal radix choice is the problem of choosing the base, or radix, that is best suited for representing numbers. Various proposals have been made to quantify the relative costs of using different radices in representing numbers, especially in computer systems. One formula is the number of digits needed to express it in that base, multiplied by the base (the number of possible values each digit could have). This expression also arises in questions regarding organizational structure, networking, and other fields. Definition The cost of representing a number ''N'' in a given base ''b'' can be defined as : E(b,N) = b \lfloor \log_b (N) +1 \rfloor \, where we use the floor function \lfloor \rfloor and the base-b logarithm \log_. If both ''b'' and ''N'' are positive integers, then the quantity E(b,N) is equal to the number of digits needed to express the number ''N'' in base ''b'', multiplied by base ''b''. This quantity thus measures the cos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radix
In a positional numeral system, the radix (radices) or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal system (the most common system in use today) the radix is ten, because it uses the ten digits from 0 through 9. In any standard positional numeral system, a number is conventionally written as with ''x'' as the string of digits and ''y'' as its base. For base ten, the subscript is usually assumed and omitted (together with the enclosing parentheses), as it is the most common way to express value. For example, (the decimal system is implied in the latter) and represents the number one hundred, while (100)2 (in the binary system with base 2) represents the number four. Etymology ''Radix'' is a Latin word for "root". ''Root'' can be considered a synonym for ''base,'' in the arithmetical sense. In numeral systems Generally, in a system with radix ''b'' (), a string of digits denotes the number , ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unary Numeral System
The unary numeral system is the simplest numeral system to represent natural numbers: to represent a number ''N'', a symbol representing 1 is repeated ''N'' times. In the unary system, the number 0 (zero) is represented by the empty string, that is, the absence of a symbol. Numbers 1, 2, 3, 4, 5, 6, ... are represented in unary as 1, 11, 111, 1111, 11111, 111111, ... Unary is a bijective numeral system. However, although it has sometimes been described as "base 1", it differs in some important ways from positional notations, in which the value of a digit depends on its position within a number. For instance, the unary form of a number can be exponentially longer than its representation in other bases. The use of tally marks in counting is an application of the unary numeral system. For example, using the tally mark (đ·), the number 3 is represented as . In East Asian cultures, the number 3 is represented as äž, a character drawn with three strokes. (One and two are repres ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hexadecimal
Hexadecimal (also known as base-16 or simply hex) is a Numeral system#Positional systems in detail, positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"â"9" to represent values 0 to 9 and "A"â"F" to represent values from ten to fifteen. Software developers and system designers widely use hexadecimal numbers because they provide a convenient representation of binary code, binary-coded values. Each hexadecimal digit represents four bits (binary digits), also known as a nibble (or nybble). For example, an 8-bit byte is two hexadecimal digits and its value can be written as to in hexadecimal. In mathematics, a subscript is typically used to specify the base. For example, the decimal value would be expressed in hexadecimal as . In programming, several notations denote hexadecimal numbers, usually involving a prefi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pentadecimal
There are many different numeral systems, that is, writing systems for expressing numbers. By culture / time period "A ''base'' is a natural number B whose ''powers'' (B multiplied by itself some number of times) are specially designated within a numerical system." The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. Some systems have two bases, a smaller (subbase) and a larger (base); an example is Roman numerals, which are organized by fives (V=5, L=50, D=500, the subbase) and tens (X=10, C=100, M=1,000, the base). By type of notation Numeral systems are classified here as to whether they use positional notation (also known as place-value notation), and further categorized by radix or base. Standard positional numeral systems The common names are derived somewhat arbitrarily from a mix of Latin and Greek, in some cases including roots from both languages within ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Duodecimal
The duodecimal system, also known as base twelve or dozenal, is a positional numeral system using twelve as its base. In duodecimal, the number twelve is denoted "10", meaning 1 twelve and 0 units; in the decimal system, this number is instead written as "12" meaning 1 ten and 2 units, and the string "10" means ten. In duodecimal, "100" means twelve squared (144), "1,000" means twelve cubed (1,728), and "0.1" means a twelfth (0.08333...). Various symbols have been used to stand for ten and eleven in duodecimal notation; this page uses and , as in hexadecimal, which make a duodecimal count from zero to twelve read 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, , , and finally 10. The Dozenal Societies of America and Great Britain (organisations promoting the use of duodecimal) use turned digits in their published material: (a turned 2) for ten (dek, pronounced dÉk) and (a turned 3) for eleven (el, pronounced Él). The number twelve, a superior highly composite number, is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decimal
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of the HinduâArabic numeral system. The way of denoting numbers in the decimal system is often referred to as ''decimal notation''. A decimal numeral (also often just ''decimal'' or, less correctly, ''decimal number''), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in or ). ''Decimal'' may also refer specifically to the digits after the decimal separator, such as in " is the approximation of to ''two decimals''". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value. The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form , w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonary
A ternary numeral system (also called base 3 or trinary) has three as its base. Analogous to a bit, a ternary digit is a trit (trinary digit). One trit is equivalent to log2 3 (about 1.58496) bits of information. Although ''ternary'' most often refers to a system in which the three digits are all nonânegative numbers; specifically , , and , the adjective also lends its name to the balanced ternary system; comprising the digits â1, 0 and +1, used in comparison logic and ternary computers. Comparison to other bases Representations of integer numbers in ternary do not get uncomfortably lengthy as quickly as in binary. For example, decimal 365 or senary corresponds to binary (nine bits) and to ternary (six digits). However, they are still far less compact than the corresponding representations in bases such as decimal â see below for a compact way to codify ternary using nonary (base 9) and septemvigesimal (base 27). : : : As for rational n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Octal
Octal (base 8) is a numeral system with eight as the base. In the decimal system, each place is a power of ten. For example: : \mathbf_ = \mathbf \times 10^1 + \mathbf \times 10^0 In the octal system, each place is a power of eight. For example: : \mathbf_8 = \mathbf \times 8^2 + \mathbf \times 8^1 + \mathbf \times 8^0 By performing the calculation above in the familiar decimal system, we see why 112 in octal is equal to 64+8+2=74 in decimal. Octal numerals can be easily converted from binary representations (similar to a quaternary numeral system) by grouping consecutive binary digits into groups of three (starting from the right, for integers). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: , corresponding to the octal digits , yielding the octal representation 112. Usage In China The eight bagua or trigrams of the I Ching correspond to octal digits: * 0 = â·, 1 = âł, 2 = â”, 3 = â±, * 4 = â¶, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Septenary
There are many different numeral systems, that is, writing systems for expressing numbers. By culture / time period "A ''base'' is a natural number B whose ''powers'' (B multiplied by itself some number of times) are specially designated within a numerical system." The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. Some systems have two bases, a smaller (subbase) and a larger (base); an example is Roman numerals, which are organized by fives (V=5, L=50, D=500, the subbase) and tens (X=10, C=100, M=1,000, the base). By type of notation Numeral systems are classified here as to whether they use positional notation (also known as place-value notation), and further categorized by radix or base. Standard positional numeral systems The common names are derived somewhat arbitrarily from a mix of Latin and Greek, in some cases including roots from both languages ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Senary
A senary () numeral system (also known as base-6, heximal, or seximal) has 6, six as its radix, base. It has been adopted independently by a small number of cultures. Like the decimal base 10, the base is a semiprime, though it is unique as the product of the only two consecutive numbers that are both prime (2 and 3). As six is a superior highly composite number, many of the arguments made in favor of the duodecimal system also apply to the senary system. Formal definition The standard Set (mathematics), set of digits in the senary system is \mathcal_6 = \lbrace 0, 1, 2, 3, 4, 5\rbrace, with the linear order 0 < 1 < 2 < 3 < 4 < 5. Let be the Kleene closure of , where is the operation of string concatenation for . The senary number system for natural numbers is the quotient set equipped with a shortlex order, where the equ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quinary
Quinary (base 5 or pental) is a numeral system with five as the base. A possible origination of a quinary system is that there are five digits on either hand. In the quinary place system, five numerals, from 0 to 4, are used to represent any real number. According to this method, five is written as 10, twenty-five is written as 100, and sixty is written as 220. As five is a prime number, only the reciprocals of the powers of five terminate, although its location between two highly composite numbers ( 4 and 6) guarantees that many recurring fractions have relatively short periods. Comparison to other radices Usage Many languages use quinary number systems, including Gumatj, Nunggubuyu, Kuurn Kopan Noot, Luiseño, and Saraveca. Gumatj has been reported to be a true "5â25" language, in which 25 is the higher group of 5. The Gumatj numerals are shown below: However, Harald Hammarström reports that "one would not usually use exact numbers for counting this hi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quaternary Numeral System
Quaternary is a numeral system with four as its base. It uses the digits 0, 1, 2, and 3 to represent any real number. Conversion from binary is straightforward. Four is the largest number within the subitizing range and one of two numbers that is both a square and a highly composite number (the other being thirty-six), making quaternary a convenient choice for a base at this scale. Despite being twice as large, its radix economy is equal to that of binary. However, it fares no better in the localization of prime numbers (the smallest better base being the primorial base six, senary). Quaternary shares with all fixed-radix numeral systems many properties, such as the ability to represent any real number with a canonical representation (almost unique) and the characteristics of the representations of rational numbers and irrational numbers. See decimal and binary for a discussion of these properties. Relation to other positional number systems Relation to binary and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |