Radiosity (3D Computer Graphics)
   HOME
*



picture info

Radiosity (3D Computer Graphics)
In 3D computer graphics, radiosity is an application of the finite element method to solving the rendering equation for scenes with surfaces that reflect light diffusely. Unlike rendering methods that use Monte Carlo algorithms (such as path tracing), which handle all types of light paths, typical radiosity only account for paths (represented by the code "LD*E") which leave a light source and are reflected diffusely some number of times (possibly zero) before hitting the eye. Radiosity is a global illumination algorithm in the sense that the illumination arriving on a surface comes not just directly from the light sources, but also from other surfaces reflecting light. Radiosity is viewpoint independent, which increases the calculations involved, but makes them useful for all viewpoints. Radiosity methods were first developed in about 1950 in the engineering field of heat transfer. They were later refined specifically for the problem of rendering computer graphics in 1984 by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Radiosity - RRV, Step 79
Radiosity may refer to: *Radiosity (radiometry), the total radiation (emitted plus reflected) leaving a surface, certainly including the reflected radiation and the emitted radiation. *Radiosity (computer graphics), a rendering algorithm which gives a realistic rendering of shadows and diffuse light. {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Run
Run(s) or RUN may refer to: Places * Run (island), one of the Banda Islands in Indonesia * Run (stream), a stream in the Dutch province of North Brabant People * Run (rapper), Joseph Simmons, now known as "Reverend Run", from the hip-hop group Run–DMC * Giacomo Bufarini, known as RUN, Italian artist based in London, UK Arts, entertainment, and media Films * ''Run'' (1991 film), an American action thriller film * ''Run'', a 1994 Hong Kong film featuring Leon Lai * ''Run'' (2002 film), an Indian Tamil film directed by N. Linguswamy starring Madhavan * ''Run'' (2004 film), an Indian film, a Hindi remake of the Tamil film * ''Run'', a 2009 Croatian film directed by Nevio Marasović * ''Run'', a 2013 film featuring William Moseley * ''The Run (2013 film)'', Malaysian film also known by it Malay-language title ''Lari'' * ''Run'' (2014 film), a French-Ivorian film * ''Run'' (2016 film), an Indian Telugu film * ''The Run'' (film), a 2017 Australian-Indian documentary * ''Run' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauss–Seidel Method
In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel, and is similar to the Jacobi method. Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant, or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823. A publication was not delivered before 1874 by Seidel. Description The Gauss–Seidel method is an iterative technique for solving a square system of linear equations with unknown : A\mathbf x = \mathbf b . It is defined by the iteration L_* \mathbf^ = \mathbf - U \mathbf^, where \mathbf^ is the -th approximation or iteration of \mathbf,\,\mathbf^ is the next or -th it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi Iteration
In numerical linear algebra, the Jacobi method is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi. Description Let :A\mathbf x = \mathbf b be a square system of ''n'' linear equations, where: A = \begin a_ & a_ & \cdots & a_ \\ a_ & a_ & \cdots & a_ \\ \vdots & \vdots & \ddots & \vdots \\a_ & a_ & \cdots & a_ \end, \qquad \mathbf = \begin x_ \\ x_2 \\ \vdots \\ x_n \end , \qquad \mathbf = \begin b_ \\ b_2 \\ \vdots \\ b_n \end. Then ''A'' can be decomposed into a diagonal component ''D'', a lower triangular part ''L'' and an upper triangular part ''U'': :A=D+L+U \qquad \text \qquad D = \begin a_ & 0 & \cdots & 0 \\ 0 & a_ & \cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dimensionless Number
A dimensionless quantity (also known as a bare quantity, pure quantity, or scalar quantity as well as quantity of dimension one) is a quantity to which no physical dimension is assigned, with a corresponding SI unit of measurement of one (or 1), ISBN 978-92-822-2272-0. which is not explicitly shown. Dimensionless quantities are widely used in many fields, such as mathematics, physics, chemistry, engineering, and economics. Dimensionless quantities are distinct from quantities that have associated dimensions, such as time (measured in seconds). Dimensionless units are dimensionless values that serve as units of measurement for expressing other quantities, such as radians (rad) or steradians (sr) for plane angles and solid angles, respectively. For example, optical extent is defined as having units of metres multiplied by steradians. History Quantities having dimension one, ''dimensionless quantities'', regularly occur in sciences, and are formally treated within the field of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lambert's Cosine Law
In optics, Lambert's cosine law says that the radiant intensity or luminous intensity observed from an ideal diffusely reflecting surface or ideal diffuse radiator is directly proportional to the cosine of the angle ''θ'' between the direction of the incident light and the surface normal; I = I0cos(''θ'').RCA Electro-Optics Handbook, p.18 ffModern Optical Engineering, Warren J. Smith, McGraw-Hill, p. 228, 256 The law is also known as the cosine emission law or Lambert's emission law. It is named after Johann Heinrich Lambert, from his ''Photometria'', published in 1760. A surface which obeys Lambert's law is said to be ''Lambertian'', and exhibits Lambertian reflectance. Such a surface has the same radiance when viewed from any angle. This means, for example, that to the human eye it has the same apparent brightness (or luminance). It has the same radiance because, although the emitted power from a given area element is reduced by the cosine of the emission angle, the so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heat
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is also often used to refer to the thermal energy contained in a system as a component of its internal energy and that is reflected in the temperature of the system. For both uses of the term, heat is a form of energy. An example of formal vs. informal usage may be obtained from the right-hand photo, in which the metal bar is "conducting heat" from its hot end to its cold end, but if the metal bar is considered a thermodynamic system, then the energy flowing within the metal bar is called internal energy, not heat. The hot metal bar is also transferring heat to its surroundings, a correct statement for both the strict and loose meanings of ''heat''. Another example of informal usage is the term '' heat content'', used despite the fact that p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radiosity Progress
Radiosity may refer to: *Radiosity (radiometry), the total radiation (emitted plus reflected) leaving a surface, certainly including the reflected radiation and the emitted radiation. *Radiosity (computer graphics) In 3D computer graphics, radiosity is an application of the finite element method to solving the rendering equation for scenes with surfaces that reflect light diffusely. Unlike rendering methods that use Monte Carlo algorithms (such as pat ...
, a rendering algorithm which gives a realistic rendering of shadows and diffuse light. {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

View Factor
In radiative heat transfer, a view factor, F_, is the proportion of the radiation which leaves surface A that strikes surface B. In a complex 'scene' there can be any number of different objects, which can be divided in turn into even more surfaces and surface segments. View factors are also sometimes known as configuration factors, form factors, angle factors or shape factors. Summation of view factors Because radiation leaving a surface is conserved, the sum of all view factors ''from'' a given surface, S_i, is unity: :\sum_^n = 1 For example, consider a case where two blobs with surfaces ''A'' and ''B'' are floating around in a cavity with surface ''C''. All of the radiation that leaves ''A'' must either hit ''B'' or ''C'', or if ''A'' is concave, it could hit ''A''. 100% of the radiation leaving ''A'' is divided up among ''A'', ''B'', and ''C''. Confusion often arises when considering the radiation that ''arrives'' at a ''target'' surface. In that case, it generally does n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Radiosity Comparison
Radiosity may refer to: *Radiosity (radiometry), the total radiation (emitted plus reflected) leaving a surface, certainly including the reflected radiation and the emitted radiation. *Radiosity (computer graphics) In 3D computer graphics, radiosity is an application of the finite element method to solving the rendering equation for scenes with surfaces that reflect light diffusely. Unlike rendering methods that use Monte Carlo algorithms (such as pat ...
, a rendering algorithm which gives a realistic rendering of shadows and diffuse light. {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electric Image Animation System
The Electric Image Animation System (EIAS) is a 3D computer graphics package published by EIAS3D. It currently runs on the macOS and Windows platforms. History Electric Image, Inc. was initially a visual effects production company. They developed their own in-house 3D animation and rendering package for the Macintosh beginning in the late 1980s, calling it ElectricImage Animation System. (To avoid confusion with the current product with its similar name, we will refer to this initial incarnation of the product simply as ''ElectricImage''.) When the company later decided to offer their software for sale externally, it quickly gained a customer base that lauded the developers for the software's exceptionally fast rendering engine and high image quality. Because it was capable of film-quality output on commodity hardware, ElectricImage was popular in the movie and television industries throughout the decade. It was used by the "Rebel Unit" at Industrial Light and Magic quite extensiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]