Rabi Resonance Method
Rabi resonance method is a technique developed by Isidor Isaac Rabi for measuring the nuclear spin. The atom is placed in a static magnetic field and a perpendicular rotating magnetic field. We present a classical treatment in here. Theory When only the static magnetic field (B0) is turned on, the spin will precess around it with Larmor frequency ν0 and the corresponding angular frequency is ω0. According to mechanics, the equation of motion of the spin J is: :: \frac = \vec \times \vec :: \vec = g \frac \vec = \gamma \vec where μ is the magnetic moment. g is g-factor, which is dimensionless and reflecting the environmental effect on the spin. Solving gives the angular frequency (Larmor frequency) with the magnetic field pointing on z-axis: :: \omega_0 = - \frac B_0 The minus sign is necessary. It reflects that the J is rotating in left-hand when the thumb is pointing as the H field. when turned on the rotating magnetic field (BR), with angular freq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isidor Isaac Rabi
Isidor Isaac Rabi (; born Israel Isaac Rabi, July 29, 1898 – January 11, 1988) was an American physicist who won the Nobel Prize in Physics in 1944 for his discovery of nuclear magnetic resonance, which is used in magnetic resonance imaging. He was also one of the first scientists in the United States to work on the cavity magnetron, which is used in microwave radar and microwave ovens. Born into a traditional Polish-Jewish family in Rymanów, Galicia, Rabi came to the United States as an infant and was raised in New York's Lower East Side. He entered Cornell University as an electrical engineering student in 1916, but soon switched to chemistry. Later, he became interested in physics. He continued his studies at Columbia University, where he was awarded his doctorate for a thesis on the magnetic susceptibility of certain crystals. In 1927, he headed for Europe, where he met and worked with many of the finest physicists of the time. In 1929, Rabi returned to the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Precess
Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called ''nutation''. In physics, there are two types of precession: torque-free and torque-induced. In astronomy, ''precession'' refers to any of several slow changes in an astronomical body's rotational or orbital parameters. An important example is the steady change in the orientation of the axis of rotation of the Earth, known as the precession of the equinoxes. Torque-free Torque-free precession implies that no external moment (torque) is applied to the body. In torque-free precession, the angular momentum is a constant, but the angular velocit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Larmor Frequency
In physics, Larmor precession (named after Joseph Larmor) is the precession of the magnetic moment of an object about an external magnetic field. The phenomenon is conceptually similar to the precession of a tilted classical gyroscope in an external torque-exerting gravitational field. Objects with a magnetic moment also have angular momentum and effective internal electric current proportional to their angular momentum; these include electrons, protons, other fermions, many atomic and nuclear systems, as well as classical macroscopic systems. The external magnetic field exerts a torque on the magnetic moment, :\vec = \vec\times\vec = \gamma\vec\times\vec, where \vec is the torque, \vec is the magnetic dipole moment, \vec is the angular momentum vector, \vec is the external magnetic field, \times symbolizes the cross product, and \gamma is the gyromagnetic ratio which gives the proportionality constant between the magnetic moment and the angular momentum. The angular momentum ve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnetic Moment
In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagnets), permanent magnets, elementary particles (such as electrons), various molecules, and many astronomical objects (such as many planets, some moons, stars, etc). More precisely, the term ''magnetic moment'' normally refers to a system's magnetic dipole moment, the component of the magnetic moment that can be represented by an equivalent magnetic dipole: a magnetic north and south pole separated by a very small distance. The magnetic dipole component is sufficient for small enough magnets or for large enough distances. Higher-order terms (such as the magnetic quadrupole moment) may be needed in addition to the dipole moment for extended objects. The magnetic dipole moment of an object is readily defined in terms of the torque that the objec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
G-factor (physics)
A ''g''-factor (also called ''g'' value or dimensionless magnetic moment) is a dimensionless quantity that characterizes the magnetic moment and angular momentum of an atom, a particle or the nucleus. It is essentially a proportionality constant that relates the different observed magnetic moments ''μ'' of a particle to their angular momentum quantum numbers and a unit of magnetic moment (to make it dimensionless), usually the Bohr magneton or nuclear magneton. Definition Dirac particle The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by \boldsymbol \mu = g \mathbf S , where ''μ'' is the spin magnetic moment of the particle, ''g'' is the ''g''-factor of the particle, ''e'' is the elementary charge, ''m'' is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ''ħ''/2 for Dirac particles). Baryon or nucleus Protons, neutrons, nuclei and other composit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rabi Frequency
The Rabi frequency is the frequency at which the probability amplitudes of two atomic energy levels fluctuate in an oscillating electromagnetic field. It is proportional to the Transition Dipole Moment of the two levels and to the amplitude (''not'' intensity) of the Electromagnetic field. Population transfer between the levels of such a 2-level system illuminated with light exactly resonant with the difference in energy between the two levels will occur at the Rabi frequency; when the incident light is detuned from this energy difference (detuned from resonance) then the population transfer occurs at the generalized Rabi frequency. The Rabi frequency is a semiclassical concept since it treats the atom as an object with quantized energy levels and the electromagnetic field as a continuous wave. In the context of a nuclear magnetic resonance experiment, the Rabi frequency is the nutation frequency of a sample's net nuclear magnetization vector about a radio-frequency field. (Not ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rabi Cycle
In physics, the Rabi cycle (or Rabi flop) is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an oscillatory driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi. A two-level system is one that has two possible energy levels. These two levels are a ground state with lower energy and an excited state with higher energy. If the energy levels are not degenerate (i.e. not having equal energies), the system can absorb a quantum of energy and transition from the ground state to the "excited" state. When an atom (or some other two-level system) is illuminated by a coherent bea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rabi Problem
The Rabi problem concerns the response of an atom to an applied harmonic electric field, with an applied frequency very close to the atom's natural frequency. It provides a simple and generally solvable example of light–atom interactions and is named after Isidor Isaac Rabi. Classical Rabi problem In the classical approach, the Rabi problem can be represented by the solution to the driven damped harmonic oscillator with the electric part of the Lorentz force as the driving term: : \ddot_a + \frac \dot_a + \omega_a^2 x_a = \frac E(t, \mathbf_a), where it has been assumed that the atom can be treated as a charged particle (of charge ''e'') oscillating about its equilibrium position around a neutral atom. Here ''xa'' is its instantaneous magnitude of oscillation, \omega_a its natural oscillation frequency, and \tau_0 its natural lifetime: : \frac = \frac, which has been calculated based on the dipole oscillator's energy loss from electromagnetic radiation. To apply this to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Optics
Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have been used to test many of the counter-intuitive predictions of quantum mechanics, such as entanglement and teleportation, and are a useful resource for quantum information processing. History Light propagating in a restricted volume of space has its energy and momentum quantized according to an integer number of particles known as photons. Quantum optics studies the nature and effects of light as quantized photons. The first major development leading to that understanding was the correct modeling of the blackbody radiation spectrum by Max Planck in 1899 under the hypothesis of light being emitted in discrete units of energy. The photoelectric effect was further evidence of this quantization as explained by Albert Einstein in a 1905 paper ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Atomic Physics
Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. Atomic physics typically refers to the study of atomic structure and the interaction between atoms. It is primarily concerned with the way in which electrons are arranged around the nucleus and the processes by which these arrangements change. This comprises ions, neutral atoms and, unless otherwise stated, it can be assumed that the term ''atom'' includes ions. The term ''atomic physics'' can be associated with nuclear power and nuclear weapons, due to the synonymous use of ''atomic'' and ''nuclear'' in standard English. Physicists distinguish between atomic physics—which deals with the atom as a system consisting of a nucleus and electrons—and nuclear physics, which studies nuclear reactions and special properties of atomic nuclei. As with many scientific fields, strict delineation can be highly contrived and atomic physics is often considered in the wider c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |