Quasivariety
   HOME
*





Quasivariety
In mathematics, a quasivariety is a class of algebraic structures generalizing the notion of variety by allowing equational conditions on the axioms defining the class. __TOC__ Definition A ''trivial algebra'' contains just one element. A quasivariety is a class ''K'' of algebras with a specified signature satisfying any of the following equivalent conditions. 1. ''K'' is a pseudoelementary class closed under subalgebras and direct products. 2. ''K'' is the class of all models of a set of quasiidentities, that is, implications of the form s_1 \approx t_1 \land \ldots \land s_n \approx t_n \rightarrow s \approx t, where s, s_1, \ldots, s_n,t, t_1, \ldots, t_n are terms built up from variables using the operation symbols of the specified signature. 3. ''K'' contains a trivial algebra and is closed under isomorphisms, subalgebras, and reduced products. 4. ''K'' contains a trivial algebra and is closed under isomorphisms, subalgebras, direct products, and ultraproducts. Examp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudoelementary Class
In logic, a pseudoelementary class is a class of structures derived from an elementary class (one definable in first-order logic) by omitting some of its sorts and relations. It is the mathematical logic counterpart of the notion in category theory of (the codomain of) a forgetful functor, and in physics of (hypothesized) hidden variable theories purporting to explain quantum mechanics. Elementary classes are (vacuously) pseudoelementary but the converse is not always true; nevertheless pseudoelementary classes share some of the properties of elementary classes such as being closed under ultraproducts. Definition A pseudoelementary class is a reduct of an elementary class. That is, it is obtained by omitting some of the sorts and relations of a (many-sorted) elementary class. Examples The theory with equality of sets under union and intersection, whose structures are of the form (''W'', ∪, ∩), can be understood naively as the pseudoelementary class formed from the two-sort ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variety (universal Algebra)
In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to #Birkhoff's_theorem, Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphism, homomorphic images, subalgebras and Direct product#Direct product in universal algebra, (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a Category (mathematics), category; these are usually called ''finitary algebraic categories''. A ''covariety'' is the class of all F-coalgebra, coalgebraic structures of a given signature. Terminology A variety of algebras should not be confused with an algebraic variety, which means a set of solutions to a system of polynomial eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Structure
In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structures of the same type (homomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Signature (logic)
In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic. Definition Formally, a (single-sorted) signature can be defined as a 4-tuple , where ''S''func and ''S''rel are disjoint sets not containing any other basic logical symbols, called respectively * ''function symbols'' (examples: +, ×, 0, 1), * ''relation symbols'' or ''predicates'' (examples: ≤, ∈), * ''constant symbols'' (examples: 0, 1), and a function ar: ''S''func \cup ''S''rel → \mathbb N which assigns a natural number called ''arity'' to every function or relation symbol. A function or relation symbol is called ''n''-ary if its arity is ''n''. Some authors define a nullary (0-ary) function symbol as ''constant s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasiidentities
In universal algebra, a quasi-identity is an implication of the form :''s''1 = ''t''1 ∧ … ∧ ''s''''n'' = ''t''''n'' → ''s'' = ''t'' where ''s''1, ..., ''s''''n'', ''t''1, ..., ''t''''n'', ''s'', and ''t'' are terms built up from variables using the operation symbols of the specified signature. A quasi-identity amounts to a conditional equation for which the conditions themselves are equations. Alternatively, it can be seen as a disjunction of inequations and one equation ''s''1 ≠ ''t''1 ∨ ... ∨ ''s''''n'' ≠ ''t''''n'' ∨ ''s'' = ''t''—that is, as a definite Horn clause. A quasi-identity with ''n'' = 0 is an ordinary identity or equation, so quasi-identities are a generalization of identities. See also * Quasivariety In mathematics, a quasivariety is a class of algebraic structures generalizing the notion of variety by allowing equational conditions on the axioms defining the class. __TOC__ Definition A ''trivial algebra'' contains just one element. A qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Term (logic)
In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact. A first-order term is recursively constructed from constant symbols, variables and function symbols. An expression formed by applying a predicate symbol to an appropriate number of terms is called an atomic formula, which evaluates to true or false in bivalent logics, given an interpretation. For example, is a term built from the constant 1, the variable , and the binary function symbols and ; it is part of the atomic formula which evaluates to true for each real-numbered value of . Besides in logic, terms play important roles in universal algebra, and rewriting systems. Formal definition Given a set ''V'' of variable symbols, a set ''C'' of constant symbols and sets ''F''''n'' of ''n''-ary fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reduced Product
In model theory, a branch of mathematical logic, and in algebra, the reduced product is a construction that generalizes both direct product and ultraproduct. Let be a family of structures of the same signature σ indexed by a set ''I'', and let ''U'' be a filter on ''I''. The domain of the reduced product is the quotient of the Cartesian product :\prod_ S_i by a certain equivalence relation ~: two elements (''ai'') and (''bi'') of the Cartesian product are equivalent if :\left\\in U If ''U'' only contains ''I'' as an element, the equivalence relation is trivial, and the reduced product is just the original Cartesian product. If ''U'' is an ultrafilter, the reduced product is an ultraproduct. Operations from σ are interpreted on the reduced product by applying the operation pointwise. Relations are interpreted by :R((a^1_i)/,\dots,(a^n_i)/) \iff \\in U. For example, if each structure is a vector space In mathematics and physics, a vector space (also called a li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ultraproduct
The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All factors need to have the same signature. The ultrapower is the special case of this construction in which all factors are equal. For example, ultrapowers can be used to construct new fields from given ones. The hyperreal numbers, an ultrapower of the real numbers, are a special case of this. Some striking applications of ultraproducts include very elegant proofs of the compactness theorem and the completeness theorem, Keisler's ultrapower theorem, which gives an algebraic characterization of the semantic notion of elementary equivalence, and the Robinson–Zakon presentation of the use of superstructures and their monomorphisms to construct nonstandard models of analysis, leading to the growth of the area of nonstandard analysis, which was pion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cancellative Semigroup
In mathematics, a cancellative semigroup (also called a cancellation semigroup) is a semigroup having the cancellation property. In intuitive terms, the cancellation property asserts that from an equality of the form ''a''·''b'' = ''a''·''c'', where · is a binary operation, one can cancel the element ''a'' and deduce the equality ''b'' = ''c''. In this case the element being cancelled out is appearing as the left factors of ''a''·''b'' and ''a''·''c'' and hence it is a case of the left cancellation property. The right cancellation property can be defined analogously. Prototypical examples of cancellative semigroups are the positive integers under addition or multiplication. Cancellative semigroups are considered to be very close to being groups because cancellability is one of the necessary conditions for a semigroup to be embeddable in a group. Moreover, every finite cancellative semigroup is a group. One of the main problems associated with the study of cancellative s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Horn Clause
In mathematical logic and logic programming, a Horn clause is a logical formula of a particular rule-like form which gives it useful properties for use in logic programming, formal specification, and model theory. Horn clauses are named for the logician Alfred Horn, who first pointed out their significance in 1951. Definition A Horn clause is a clause (a disjunction of literals) with at most one positive, i.e. unnegated, literal. Conversely, a disjunction of literals with at most one negated literal is called a dual-Horn clause. A Horn clause with exactly one positive literal is a definite clause or a strict Horn clause; a definite clause with no negative literals is a unit clause, and a unit clause without variables is a fact;. A Horn clause without a positive literal is a goal clause. Note that the empty clause, consisting of no literals (which is equivalent to ''false'') is a goal clause. These three kinds of Horn clauses are illustrated in the following propositional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]