Quasi-complete Space
   HOME
*





Quasi-complete Space
In functional analysis, a topological vector space (TVS) is said to be quasi-complete or boundedly complete if every closed and bounded subset is complete. This concept is of considerable importance for non- metrizable TVSs. Properties * Every quasi-complete TVS is sequentially complete. * In a quasi-complete locally convex space, the closure of the convex hull of a compact subset is again compact. * In a quasi-complete Hausdorff TVS, every precompact subset is relatively compact. * If is a normed space and is a quasi-complete locally convex TVS then the set of all compact linear maps of into is a closed vector subspace of L_b(X;Y). * Every quasi-complete infrabarrelled space is barreled. * If is a quasi-complete locally convex space then every weakly bounded subset of the continuous dual space is strongly bounded. * A quasi-complete nuclear space then has the Heine–Borel property. Examples and sufficient conditions Every complete TVS is quasi-complet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations. The usage of the word '' functional'' as a noun goes back to the calculus of variations, implying a function whose argument is a function. The term was first used in Hadamard's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normed Space
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real (physical) world. A norm is a real-valued function defined on the vector space that is commonly denoted x\mapsto \, x\, , and has the following properties: #It is nonnegative, meaning that \, x\, \geq 0 for every vector x. #It is positive on nonzero vectors, that is, \, x\, = 0 \text x = 0. # For every vector x, and every scalar \alpha, \, \alpha x\, = , \alpha, \, \, x\, . # The triangle inequality holds; that is, for every vectors x and y, \, x+y\, \leq \, x\, + \, y\, . A norm induces a distance, called its , by the formula d(x,y) = \, y-x\, . which makes any normed vector space into a metric space and a topological vector space. If this metric space is complete then the normed space is a Banach space. Every nor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semi-reflexive Space
In the area of mathematics known as functional analysis, a semi-reflexive space is a locally convex topological vector space (TVS) ''X'' such that the canonical evaluation map from ''X'' into its bidual (which is the strong dual of the strong dual of ''X'') is bijective. If this map is also an isomorphism of TVSs then it is called reflexive. Semi-reflexive spaces play an important role in the general theory of locally convex TVSs. Since a normable TVS is semi-reflexive if and only if it is reflexive, the concept of semi-reflexivity is primarily used with TVSs that are not normable. Definition and notation Brief definition Suppose that is a topological vector space (TVS) over the field \mathbb (which is either the real or complex numbers) whose continuous dual space, X^, separates points on (i.e. for any x \in X there exists some x^ \in X^ such that x^(x) \neq 0). Let X^_b and X^_ both denote the strong dual of , which is the vector space X^ of continuous linear func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nuclear Space
In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck. The topology on nuclear spaces can be defined by a family of seminorms whose unit balls decrease rapidly in size. Vector spaces whose elements are "smooth" in some sense tend to be nuclear spaces; a typical example of a nuclear space is the set of smooth functions on a compact manifold. All finite-dimensional vector spaces are nuclear. There are no Banach spaces that are nuclear, except for the finite-dimensional ones. In practice a sort of converse to this is often true: if a "naturally occurring" topological vector space is a Banach space, then there is a good chance that it is nuclear. Original motivation: The Schwartz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strong Dual Space
In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) X is the continuous dual space X^ of X equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of X, where this topology is denoted by b\left(X^, X\right) or \beta\left(X^, X\right). The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, X^, has the strong dual topology, X^_b or X^_ may be written. Strong dual topology Throughout, all vector spaces will be assumed to be over the field \mathbb of either the real numbers \R or complex numbers \C. Definition from a dual system Let (X, Y, \langle \cdot, \cdot \rangle) be a dual pair of vector spaces over the field \mathbb of real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infrabarrelled Space
In functional analysis, a discipline within mathematics, a locally convex topological vector space (TVS) is said to be infrabarrelled (also spelled infra barreled) if every bounded absorbing barrel is a neighborhood of the origin. Characterizations If X is a Hausdorff locally convex space then the canonical injection from X into its bidual is a topological embedding if and only if X is infrabarrelled. Properties Every quasi-complete infrabarrelled space is barrelled. Examples Every barrelled space In functional analysis and related areas of mathematics, a barrelled space (also written barreled space) is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a ... is infrabarrelled. A closed vector subspace of an infrabarrelled space is, however, not necessarily infrabarrelled. Every product and locally convex direct sum of any family of infrabarrelled spaces is infrabarrelled. Eve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Linear Map
In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact closure in Y). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that X,Y are Banach, but the definition can be extended to more general spaces. Any bounded operator ''T'' that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting. When ''Y'' is a Hilbert space, it is true that any compact operator is a limit of finite-rank operators, so that the class of compact operators can be defined alternatively as the closure of the set of finite-rank operators in the norm topology. Whether this was true in general for Banach spaces (the approximation property) was an unsolved questio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Locally Convex
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals. Fréchet spaces are locally convex spaces that are completely metrizable (with a choice of complete metric). They are generalizations of Banach spaces, which are complete vector spaces with respect to a metric generated by a norm. History Metrizable topologies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Totally Bounded
In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size” (where the meaning of “size” depends on the structure of the ambient space). The term precompact (or pre-compact) is sometimes used with the same meaning, but precompact is also used to mean relatively compact. These definitions coincide for subsets of a complete metric space, but not in general. In metric spaces A metric space (M,d) is ''totally bounded'' if and only if for every real number \varepsilon > 0, there exists a finite collection of open balls in ''M'' of radius \varepsilon whose union contains . Equivalently, the metric space ''M'' is totally bounded if and only if for every \varepsilon >0, there exists a finite cover such that the radius of each element of the cover is at most \varepsilon. This is equiva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Vector Space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also continuous functions. Such a topology is called a and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space (although this article does not). One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs. Many topological vector spaces are spaces of functions, or linear operators acting o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points. The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its dual problem of intersecting half-spaces, are fundamental problems of co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]