Quasi-bialgebra
   HOME
*





Quasi-bialgebra
In mathematics, quasi-bialgebras are a generalization of bialgebras: they were first defined by the Ukrainian mathematician Vladimir Drinfeld in 1990. A quasi-bialgebra differs from a bialgebra by having coassociativity replaced by an invertible element \Phi which controls the non- coassociativity. One of their key properties is that the corresponding category of modules forms a tensor category. Definition A quasi-bialgebra \mathcal = (\mathcal, \Delta, \varepsilon, \Phi,l,r) is an algebra \mathcal over a field \mathbb equipped with morphisms of algebras :\Delta : \mathcal \rightarrow \mathcal :\varepsilon : \mathcal \rightarrow \mathbb along with invertible elements \Phi \in \mathcal, and r,l \in A such that the following identities hold: :(id \otimes \Delta) \circ \Delta(a) = \Phi \lbrack (\Delta \otimes id) \circ \Delta (a) \rbrack \Phi^, \quad \forall a \in \mathcal :\lbrack (id \otimes id \otimes \Delta)(\Phi) \rbrack \ \lbrack (\Delta \otimes id \otimes id)(\Phi) \rbra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Drinfeld Twist
In mathematics, a Hopf algebra, ''H'', is quasitriangularMontgomery & Schneider (2002), p. 72 if there exists an invertible element, ''R'', of H \otimes H such that :*R \ \Delta(x)R^ = (T \circ \Delta)(x) for all x \in H, where \Delta is the coproduct on ''H'', and the linear map T : H \otimes H \to H \otimes H is given by T(x \otimes y) = y \otimes x, :*(\Delta \otimes 1)(R) = R_ \ R_, :*(1 \otimes \Delta)(R) = R_ \ R_, where R_ = \phi_(R), R_ = \phi_(R), and R_ = \phi_(R), where \phi_ : H \otimes H \to H \otimes H \otimes H, \phi_ : H \otimes H \to H \otimes H \otimes H, and \phi_ : H \otimes H \to H \otimes H \otimes H, are algebra morphisms determined by :\phi_(a \otimes b) = a \otimes b \otimes 1, :\phi_(a \otimes b) = a \otimes 1 \otimes b, :\phi_(a \otimes b) = 1 \otimes a \otimes b. ''R'' is called the R-matrix. As a consequence of the properties of quasitriangularity, the R-matrix, ''R'', is a solution of the Yang–Baxter equation (and so a module ''V'' of ''H'' c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bialgebra
In mathematics, a bialgebra over a field ''K'' is a vector space over ''K'' which is both a unital associative algebra and a counital coassociative coalgebra. The algebraic and coalgebraic structures are made compatible with a few more axioms. Specifically, the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the multiplication and the unit of the algebra both are coalgebra morphisms. (These statements are equivalent since they are expressed by the same commutative diagrams.) Similar bialgebras are related by bialgebra homomorphisms. A bialgebra homomorphism is a linear map that is both an algebra and a coalgebra homomorphism. As reflected in the symmetry of the commutative diagrams, the definition of bialgebra is self-dual, so if one can define a dual of ''B'' (which is always possible if ''B'' is finite-dimensional), then it is automatically a bialgebra. Formal definition (''B'', ∇, η, Δ, ε) is a bialgebra over ''K'' if it h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasitriangular Hopf Algebra
In mathematics, a Hopf algebra, ''H'', is quasitriangularMontgomery & Schneider (2002), p. 72 if there exists an invertible element, ''R'', of H \otimes H such that :*R \ \Delta(x)R^ = (T \circ \Delta)(x) for all x \in H, where \Delta is the coproduct on ''H'', and the linear map T : H \otimes H \to H \otimes H is given by T(x \otimes y) = y \otimes x, :*(\Delta \otimes 1)(R) = R_ \ R_, :*(1 \otimes \Delta)(R) = R_ \ R_, where R_ = \phi_(R), R_ = \phi_(R), and R_ = \phi_(R), where \phi_ : H \otimes H \to H \otimes H \otimes H, \phi_ : H \otimes H \to H \otimes H \otimes H, and \phi_ : H \otimes H \to H \otimes H \otimes H, are algebra morphisms determined by :\phi_(a \otimes b) = a \otimes b \otimes 1, :\phi_(a \otimes b) = a \otimes 1 \otimes b, :\phi_(a \otimes b) = 1 \otimes a \otimes b. ''R'' is called the R-matrix. As a consequence of the properties of quasitriangularity, the R-matrix, ''R'', is a solution of the Yang–Baxter equation (and so a module ''V'' of ''H'' c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasitriangular Hopf Algebra
In mathematics, a Hopf algebra, ''H'', is quasitriangularMontgomery & Schneider (2002), p. 72 if there exists an invertible element, ''R'', of H \otimes H such that :*R \ \Delta(x)R^ = (T \circ \Delta)(x) for all x \in H, where \Delta is the coproduct on ''H'', and the linear map T : H \otimes H \to H \otimes H is given by T(x \otimes y) = y \otimes x, :*(\Delta \otimes 1)(R) = R_ \ R_, :*(1 \otimes \Delta)(R) = R_ \ R_, where R_ = \phi_(R), R_ = \phi_(R), and R_ = \phi_(R), where \phi_ : H \otimes H \to H \otimes H \otimes H, \phi_ : H \otimes H \to H \otimes H \otimes H, and \phi_ : H \otimes H \to H \otimes H \otimes H, are algebra morphisms determined by :\phi_(a \otimes b) = a \otimes b \otimes 1, :\phi_(a \otimes b) = a \otimes 1 \otimes b, :\phi_(a \otimes b) = 1 \otimes a \otimes b. ''R'' is called the R-matrix. As a consequence of the properties of quasitriangularity, the R-matrix, ''R'', is a solution of the Yang–Baxter equation (and so a module ''V'' of ''H'' c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bialgebra
In mathematics, a bialgebra over a field ''K'' is a vector space over ''K'' which is both a unital associative algebra and a counital coassociative coalgebra. The algebraic and coalgebraic structures are made compatible with a few more axioms. Specifically, the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the multiplication and the unit of the algebra both are coalgebra morphisms. (These statements are equivalent since they are expressed by the same commutative diagrams.) Similar bialgebras are related by bialgebra homomorphisms. A bialgebra homomorphism is a linear map that is both an algebra and a coalgebra homomorphism. As reflected in the symmetry of the commutative diagrams, the definition of bialgebra is self-dual, so if one can define a dual of ''B'' (which is always possible if ''B'' is finite-dimensional), then it is automatically a bialgebra. Formal definition (''B'', ∇, η, Δ, ε) is a bialgebra over ''K'' if it h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quasi-Hopf Algebra
A quasi-Hopf algebra is a generalization of a Hopf algebra, which was defined by the Russian mathematician Vladimir Drinfeld in 1989. A ''quasi-Hopf algebra'' is a quasi-bialgebra \mathcal = (\mathcal, \Delta, \varepsilon, \Phi) for which there exist \alpha, \beta \in \mathcal and a bijective antihomomorphism ''S'' ( antipode) of \mathcal such that : \sum_i S(b_i) \alpha c_i = \varepsilon(a) \alpha : \sum_i b_i \beta S(c_i) = \varepsilon(a) \beta for all a \in \mathcal and where :\Delta(a) = \sum_i b_i \otimes c_i and :\sum_i X_i \beta S(Y_i) \alpha Z_i = \mathbb, :\sum_j S(P_j) \alpha Q_j \beta S(R_j) = \mathbb. where the expansions for the quantities \Phiand \Phi^ are given by :\Phi = \sum_i X_i \otimes Y_i \otimes Z_i and :\Phi^{-1}= \sum_j P_j \otimes Q_j \otimes R_j. As for a quasi-bialgebra, the property of being quasi-Hopf is preserved under twisting. Usage Quasi-Hopf algebras form the basis of the study of Drinfeld twists and the representations in terms of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hopf Algebra
Hopf is a German surname. Notable people with the surname include: *Eberhard Hopf (1902–1983), Austrian mathematician *Hans Hopf (1916–1993), German tenor *Heinz Hopf (1894–1971), German mathematician *Heinz Hopf (actor) (1934–2001), Swedish actor *Ludwig Hopf (1884–1939), German physicist *Maria Hopf Maria Hopf (13 September 1913 – 24 August 2008) was a pioneering archaeobotanist, based at the RGZM, Mainz. Career Hopf studied botany from 1941–44, receiving her doctorate in 1947 on the subject of soil microbes. She then worked in phyto ... (1914-2008), German botanist and archaeologist {{surname, Hopf German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heisenberg Model (quantum)
The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin \sigma_i \in \ represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction. Overview For quantum mechanical reasons (see exchange interaction or ), the dominant coupling between two dipoles may cause nearest-neighbors to have lowest energy when they are ''aligned''. Under this assumption (so that magnetic interactions only occur between adjacent dipoles) and on a 1-dimensional periodic lattice, the Hamiltonian can be written in the form :\hat H = -J \sum_^ \sig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Statistical Mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Statistical mechanics arose out of the development of classical thermodynamics, a field for which it was successful in explaining macroscopic physical properties—such as temperature, pressure, and heat capacity—in terms of microscopic parameters that fluctuate about average values and are characterized by probability distributions. This established the fields of statistical thermodynamics and statistical physics. The founding of the field of statistical mechanics is generally credited to three physicists: *Ludwig Boltzmann, who developed the fundamental interpretation of entropy in terms of a collection of microstates *James Clerk Maxwell, who developed models of probability distr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


R-matrix
The term R-matrix has several meanings, depending on the field of study. The term R-matrix is used in connection with the Yang–Baxter equation. This is an equation which was first introduced in the field of statistical mechanics, taking its name from independent work of C. N. Yang and R. J. Baxter. The classical R-matrix arises in the definition of the classical Yang–Baxter equation. In quasitriangular Hopf algebra, the R-matrix is a solution of the Yang–Baxter equation. The numerical modeling of diffraction gratings in optical science can be performed using the R-matrix propagation algorithm. R-matrix method in quantum mechanics There is a method in computational quantum mechanics for studying scattering known as the R-matrix. This method was originally formulated for studying resonances in nuclear scattering by Wigner and Eisenbud. Using that work as a basis, an R-matrix method was developed for electron, positron and photon scattering by atoms. This approac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]