Quantifier Elimination
   HOME
*





Quantifier Elimination
Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement "\exists x such that \ldots" can be viewed as a question "When is there an x such that \ldots?", and the statement without quantifiers can be viewed as the answer to that question. One way of classifying formulas is by the amount of quantification. Formulas with less depth of quantifier alternation are thought of as being simpler, with the quantifier-free formulas as the simplest. A theory has quantifier elimination if for every formula \alpha, there exists another formula \alpha_ without quantifiers that is equivalent to it ( modulo this theory). Examples An example from high school mathematics says that a single-variable quadratic polynomial has a real root if and only if its discriminant is non-negative: :: \exists x\in\mathbb. (a\neq 0 \wedge ax^2+bx+c=0)\ \ \Longleftrightarrow\ \ a\neq 0 \wedge b^2-4ac\geq 0 He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplification (other)
Simplification, Simplify, or Simplified may refer to: Mathematics Simplification is the process of replacing a mathematical expression by an equivalent one, that is simpler (usually shorter), for example * Simplification of algebraic expressions, in computer algebra * Simplification of boolean expressions i.e. logic optimization * Simplification by conjunction elimination in inference in logic yields a simpler, but generally non-equivalent formula * Simplification of fractions Science * Approximations simplify a more detailed or difficult to use process or model Linguistics * Simplification of Chinese characters * Simplified English (other) * Text simplification Music * Simplified (band), a 2002 rock band from Charlotte, North Carolina * ''Simplified'' (album), a 2005 album by Simply Red * "Simplify", a 2008 song by Sanguine * "Simplify", a 2018 song by Young the Giant from ''Mirror Master'' See also * Muntzing (simplification of electric circuits) * Reduction (math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Term Algebra
In universal algebra and mathematical logic, a term algebra is a freely generated algebraic structure over a given signature. For example, in a signature consisting of a single binary operation, the term algebra over a set ''X'' of variables is exactly the free magma generated by ''X''. Other synonyms for the notion include absolutely free algebra and anarchic algebra. From a category theory perspective, a term algebra is the initial object for the category of all ''X''-generated algebras of the same signature, and this object, unique up to isomorphism, is called an initial algebra; it generates by homomorphic projection all algebras in the category. A similar notion is that of a Herbrand universe in logic, usually used under this name in logic programming, which is (absolutely freely) defined starting from the set of constants and function symbols in a set of clauses. That is, the Herbrand universe consists of all ground terms: terms that have no variables in them. An atomic for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Amalgamation Property
In the mathematical field of model theory, the amalgamation property is a property of collections of structures that guarantees, under certain conditions, that two structures in the collection can be regarded as substructures of a larger one. This property plays a crucial role in Fraïssé's theorem, which characterises classes of finite structures that arise as ages of countable homogeneous structures. The diagram of the amalgamation property appears in many areas of mathematical logic. Examples include in modal logic as an incestual accessibility relation, and in lambda calculus as a manner of reduction having the Church–Rosser property. Definition An ''amalgam'' can be formally defined as a 5-tuple (''A,f,B,g,C'') such that ''A,B,C'' are structures having the same signature, and ''f: A'' → ''B, g'': ''A'' → ''C'' are ''embeddings''. Recall that ''f: A'' → ''B'' is an ''embedding'' if ''f'' is an injective morphism which in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Model Complete
In model theory, a first-order theory is called model complete if every embedding of its models is an elementary embedding. Equivalently, every first-order formula is equivalent to a universal formula. This notion was introduced by Abraham Robinson. Model companion and model completion A companion of a theory ''T'' is a theory ''T''* such that every model of ''T'' can be embedded in a model of ''T''* and vice versa. A model companion of a theory ''T'' is a companion of ''T'' that is model complete. Robinson proved that a theory has at most one model companion. Not every theory is model-companionable, e.g. theory of groups. However if ''T'' is an \aleph_0-categorical theory, then it always has a model companion. A model completion for a theory ''T'' is a model companion ''T''* such that for any model ''M'' of ''T'', the theory of ''T''* together with the diagram of ''M'' is complete. Roughly speaking, this means every model of ''T'' is embeddable in a model of ''T''* in a uniqu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sentence (mathematical Logic)
:''This article is a technical mathematical article in the area of predicate logic. For the ordinary English language meaning see Sentence (linguistics), for a less technical introductory article see Statement (logic).'' In mathematical logic, a sentence (or closed formula)Edgar Morscher, "Logical Truth and Logical Form", ''Grazer Philosophische Studien'' 82(1), pp. 77–90. of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition, something that ''must'' be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: As the free variables of a (general) formula can range over several values, the truth value of such a formula may vary. Sentences without any logical connectives or quantifiers in them are known as atomic sentences; by analogy to atomic formula. Sentences are then built up out of atomic formulas by applying con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decidability (logic)
In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Zeroth-order logic (propositional logic) is decidable, whereas first-order and higher-order logic are not. Logical systems are decidable if membership in their set of logically valid formulas (or theorems) can be effectively determined. A theory (set of sentences closed under logical consequence) in a fixed logical system is decidable if there is an effective method for determining whether arbitrary formulas are included in the theory. Many important problems are undecidable, that is, it has been proven that no effective method for determining membership (returning a correct answer after finite, though possibly very long, time in all cases) can exist for them. Decidability of a logical system Each logical system comes with both a syntactic component, which among other things determines the notion of provability, and a semantic component, which determines ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tarski–Seidenberg Theorem
In mathematics, the Tarski–Seidenberg theorem states that a set in (''n'' + 1)-dimensional space defined by polynomial equations and inequalities can be projected down onto ''n''-dimensional space, and the resulting set is still definable in terms of polynomial identities and inequalities. The theorem—also known as the Tarski–Seidenberg projection property—is named after Alfred Tarski and Abraham Seidenberg. It implies that quantifier elimination is possible over the reals, that is that every formula constructed from polynomial equations and inequalities by logical connectives (''or''), (''and''), (''not'') and quantifiers (''for all''), (''exists'') is equivalent to a similar formula without quantifiers. An important consequence is the decidability of the theory of real-closed fields. Although the original proof of the theorem was constructive, the resulting algorithm has a computational complexity that is too high for using the method on a comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fourier–Motzkin Elimination
Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936. Elimination The elimination of a set of variables, say ''V'', from a system of relations (here linear inequalities) refers to the creation of another system of the same sort, but without the variables in ''V'', such that both systems have the same solutions over the remaining variables. If all variables are eliminated from a system of linear inequalities, then one obtains a system of constant inequalities. It is then trivial to decide whether the resulting system is true or false. It is true if and only if the original system has solutions. As a consequence, elimination of all variables can be used to detect whether a system of inequalities has solutions or not. Consider a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordered Group
In abstract algebra, a partially ordered group is a group (''G'', +) equipped with a partial order "≤" that is ''translation-invariant''; in other words, "≤" has the property that, for all ''a'', ''b'', and ''g'' in ''G'', if ''a'' ≤ ''b'' then ''a'' + ''g'' ≤ ''b'' + ''g'' and ''g'' +'' a'' ≤ ''g'' +'' b''. An element ''x'' of ''G'' is called positive if 0 ≤ ''x''. The set of elements 0 ≤ ''x'' is often denoted with ''G''+, and is called the positive cone of ''G''. By translation invariance, we have ''a'' ≤ ''b'' if and only if 0 ≤ -''a'' + ''b''. So we can reduce the partial order to a monadic property: if and only if For the general group ''G'', the existence of a positive cone specifies an order on ''G''. A group ''G'' is a partially orderable group if and only if there exists a subset ''H'' (which is ''G''+) of ''G'' such that: * 0 ∈ ''H'' * if ''a'' ∈ ''H'' and ''b'' ∈ ''H'' then ''a'' + ''b'' ∈ ''H'' * if ''a'' ∈ ''H'' then -''x'' + ''a'' + '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Queue (mathematics)
Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service. Queueing theory has its origins in research by Agner Krarup Erlang when he created models to describe the system of Copenhagen Telephone Exchange company, a Danish company. The ideas have since seen applications including telecommunication, traffic engineering, computing and, particularly in industrial engineering, in the design of factories, shops, offices and hospitals, as well as in project management. Spelling The spelling "queueing" over "queuing" is typically encountered in the academic research field. In fact, one of the flagship journals of the field is ''Queueing Systems''. Single queueing nodes A queue, or queueing node ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]