Quotient By An Equivalence Relation
   HOME
*





Quotient By An Equivalence Relation
In mathematics, given a category ''C'', a quotient of an object ''X'' by an equivalence relation f: R \to X \times X is a coequalizer for the pair of maps :R \ \overset\ X \times X \ \overset\ X,\ \ i = 1,2, where ''R'' is an object in ''C'' and "''f'' is an equivalence relation" means that, for any object ''T'' in ''C'', the image (which is a set) of f: R(T) = \operatorname(T, R) \to X(T) \times X(T) is an equivalence relation; that is, a reflexive, symmetric and transitive relation. The basic case in practice is when ''C'' is the category of all schemes over some scheme ''S''. But the notion is flexible and one can also take ''C'' to be the category of sheaves. Examples *Let ''X'' be a set and consider some equivalence relation on it. Let ''Q'' be the set of all equivalence classes in ''X''. Then the map q: X \to Q that sends an element ''x'' to the equivalence class to which ''x'' belongs is a quotient. *In the above example, ''Q'' is a subset of the power set ''H'' of ''X' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf (mathematics)
In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their correct definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or morphisms) from one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Categorical Quotient
In algebraic geometry, given a category ''C'', a categorical quotient of an object ''X'' with action of a group ''G'' is a morphism \pi: X \to Y that :(i) is invariant; i.e., \pi \circ \sigma = \pi \circ p_2 where \sigma: G \times X \to X is the given group action and ''p''2 is the projection. :(ii) satisfies the universal property: any morphism X \to Z satisfying (i) uniquely factors through \pi. One of the main motivations for the development of geometric invariant theory was the construction of a categorical quotient for varieties or schemes. Note \pi need not be surjective. Also, if it exists, a categorical quotient is unique up to a canonical isomorphism. In practice, one takes ''C'' to be the category of varieties or the category of schemes over a fixed scheme. A categorical quotient \pi is a universal categorical quotient if it is stable under base change: for any Y' \to Y, \pi': X' = X \times_Y Y' \to Y' is a categorical quotient. A basic result is that geometric quoti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abel Map
Abel ''Hábel''; ar, هابيل, Hābīl is a Biblical figure in the Book of Genesis within Abrahamic religions. He was the younger brother of Cain, and the younger son of Adam and Eve, the first couple in Biblical history. He was a shepherd who offered his firstborn flock up to God as an offering. God accepted his offering but not his brother's. Cain then killed Abel out of jealousy. According to Genesis, this was the first murder in the history of mankind. Genesis narrative Interpretations Jewish and Christian interpretations According to the narrative in Genesis, Abel ( ''Hébel'', in pausa ''Hā́ḇel''; grc-x-biblical, Ἅβελ ''Hábel''; ar, هابيل, ''Hābēl'') is Eve's second son. His name in Hebrew is composed of the same three consonants as a root meaning "breath". Julius Wellhausen has proposed that the name is independent of the root. Eberhard Schrader had previously put forward the Akkadian (Old Assyrian dialect) ''ablu'' ("son") as a more likely ety ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Relative Effective Divisor
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-''r'' subvariety need not be definable by only ''r'' equations when ''r'' is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this property, much of algebraic geometry studies an arbitrary variety by analysing its codimension-1 subvarieties an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Picard Scheme
In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds. Alternatively, the Picard group can be defined as the sheaf cohomology group :H^1 (X, \mathcal_X^).\, For integral schemes the Picard group is isomorphic to the class group of Cartier divisors. For complex manifolds the exponential sheaf sequence gives basic information on the Picard group. The name is in honour of Émile Picard's theories, in particular of divisors on algebraic surfaces. Examples * The Picard group of the spectrum of a Dedekind domain is its ''ideal class group''. * The invertible sheaves on projective space P''n''(''k'') for ''k'' a field, are the twisting sh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hilbert Scheme
In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general projective scheme), refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by . Hironaka's example shows that non-projective varieties need not have Hilbert schemes. Hilbert scheme of projective space The Hilbert scheme \mathbf(n) of \mathbb^n classifies closed subschemes of projective space in the following sense: For any locally Noetherian scheme , the set of -valued points :\operatorname(S, \mathbf(n)) of the Hilbert scheme is naturally isomorphic to the set of closed subschemes of \mathbb^n \times S that are flat over . The closed subschemes of \mathbb^n \times S that are flat over can informally be thought of as the families of subschemes of projective space parameterized by . Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . The notation , meaning the set of all functions from S to a given set of two elements (e.g., ), is used because the powerset of can be identified with, equivalent to, or bijective to the set of all the functions from to the given two elements set. Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra (structure), Boolean algebra under the subset relation, in which the join and meet are given by Intersection (set theory), intersection and Union (set theory), union, and the subset relation itself is the Inclusion (Boolean algebra), Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Classes
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \,\sim\, on S, the of an element a in S, denoted by is the set \ of elements which are equivalent to a. It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of S. This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of S by \,\sim\,, and is denoted by S / \sim. When the set S has some structure (such as a group operation or a topology) and the equivalence relation \,\sim\, is compatible with this structure, the quotient set often inherits a similar structure from its parent set. Exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of elements in and in . It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element is ''related'' to an element , if and only if the pair belongs to the set of ordered pairs that defines the ''binary relation''. A binary relation is the most studied special case of an Finitary relation, -ary relation over sets , which is a subset of the Cartesian product X_1 \times \cdots \times X_n. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime is related to each integer that is a Divisibility, multiple of , but not to an integer that is not a multiple of . In this relation, for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]