HOME





Quater-imaginary Base
The quater-imaginary numeral system is a numeral system, first proposed by Donald Knuth in 1960. Unlike standard numeral systems, which use an integer (such as 10 in decimal, or 2 in binary) as their bases, it uses the imaginary number 2i (such that (2i)^2=-4) as its base. It is able to (almost) uniquely represent every complex number using only the digits 0, 1, 2, and 3. Numbers less than zero, which are ordinarily represented with a minus sign, are representable as digit strings in quater-imaginary; for example, the number −1 is represented as "103" in quater-imaginary notation. Decomposing the quater-imaginary In a positional system with base b, \ldots d_3d_2d_1d_0.d_d_d_\ldots represents\dots + d_3\cdot b^3+d_2\cdot b^2+d_1\cdot b+d_0+d_\cdot b^+d_\cdot b^+d_\cdot b^\dots In this numeral system, b = 2i, and because (2i)^2=-4, the entire series of powers can be separated into two different series, so that it simplifies to \begin & dots+d_4\cdot(-4)^2 +d_2\cdot(-4)^1+ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numeral System
A numeral system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbols may represent different numbers in different numeral systems. For example, "11" represents the number ''eleven'' in the decimal or base-10 numeral system (today, the most common system globally), the number ''three'' in the binary or base-2 numeral system (used in modern computers), and the number ''two'' in the unary numeral system (used in tallying scores). The number the numeral represents is called its ''value''. Additionally, not all number systems can represent the same set of numbers; for example, Roman, Greek, and Egyptian numerals don't have a representation of the number zero. Ideally, a numeral system will: *Represent a useful set of numbers (e.g. all integers, or rational numbers) *Give every number represented a unique representation (or a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subtraction
Subtraction (which is signified by the minus sign, –) is one of the four Arithmetic#Arithmetic operations, arithmetic operations along with addition, multiplication and Division (mathematics), division. Subtraction is an operation that represents removal of objects from a collection. For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken away, resulting in a total of 3 peaches. Therefore, the ''difference'' of 5 and 2 is 3; that is, . While primarily associated with natural numbers in arithmetic, subtraction can also represent removing or decreasing physical and abstract quantities using different kinds of objects including negative numbers, Fraction (mathematics), fractions, irrational numbers, Euclidean vector, vectors, decimals, functions, and matrices. In a sense, subtraction is the inverse of addition. That is, if and only if . In words: the difference of two numbers is the number that gives the first one when added to the second one. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pearson Education, Inc
Pearson Education, known since 2011 as simply Pearson, is the educational publishing and services subsidiary of the international corporation Pearson plc. The subsidiary was formed in 1998, when Pearson plc acquired Simon & Schuster's educational business and combined it with Pearson's existing education company Addison-Wesley Longman. Pearson Education was restyled as simply Pearson in 2011. In 2016, the diversified parent corporation Pearson plc rebranded to focus entirely on education publishing and services; further, as of 2023, Pearson Education is Pearson plc's main subsidiary. In 2019, Pearson Education began phasing out the prominence of its hard-copy textbooks in favor of digital textbooks, which cost the company far less, and can be updated frequently and easily. As of 2023, Pearson Education has testing/teaching centers in over 55 countries worldwide; the UK and the U.S. have the most centers. The headquarters of parent company Pearson plc are in London, England. P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Addison Wesley
Addison–Wesley is an American publisher of textbooks and computer literature. It is an imprint of Pearson plc, a global publishing and education company. In addition to publishing books, Addison–Wesley also distributes its technical titles through the O'Reilly Online Learning e-reference service. Addison–Wesley's majority of sales derive from the United States (55%) and Europe (22%). The Addison–Wesley Professional Imprint produces content including books, eBooks, and video for the professional IT worker including developers, programmers, managers, system administrators. Classic titles include '' The Art of Computer Programming'', '' The C++ Programming Language'', '' The Mythical Man-Month'', and '' Design Patterns''. History Lew Addison Cummings and Melbourne Wesley Cummings founded Addison–Wesley in 1942, with the first book published by Addison–Wesley being Massachusetts Institute of Technology professor Francis Weston Sears' ''Mechanics''. Its first comput ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex-base System
In arithmetic, a complex-base system is a positional numeral system whose radix is an imaginary (proposed by Donald Knuth in 1955) or complex number (proposed by S. Khmelnik in 1964 and Walter F. Penney in 1965W. Penney, A "binary" system for complex numbers, JACM 12 (1965) 247-248.). In general Let D be an integral domain \subset \C, and , \cdot, the (Archimedean) absolute value on it. A number X\in D in a positional number system is represented as an expansion : X = \pm \sum_^ x_\nu \rho^\nu, where : The cardinality R:=, Z, is called the ''level of decomposition''. A positional number system or coding system is a pair : \left\langle \rho, Z \right\rangle with radix \rho and set of digits Z, and we write the standard set of digits with R digits as : Z_R := \. Desirable are coding systems with the features: * Every number in D, e. g. the integers \Z, the Gaussian integers \Z mathrm i/math> or the integers \Z tfrac2/math>, is ''uniquely'' representable as a ''finite' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quaternary Numeral System
Quaternary is a numeral system with four as its base. It uses the digits 0, 1, 2, and 3 to represent any real number. Conversion from binary is straightforward. Four is the largest number within the subitizing range and one of two numbers that is both a square and a highly composite number (the other being thirty-six), making quaternary a convenient choice for a base at this scale. Despite being twice as large, its radix economy is equal to that of binary. However, it fares no better in the localization of prime numbers (the smallest better base being the primorial base six, senary). Quaternary shares with all fixed-radix numeral systems many properties, such as the ability to represent any real number with a canonical representation (almost unique) and the characteristics of the representations of rational numbers and irrational numbers. See decimal and binary for a discussion of these properties. Relation to other positional number systems Relation to binary and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Z-order Curve
In mathematical analysis and computer science, functions which are Z-order, Lebesgue curve, Morton space-filling curve, Morton order or Morton code map multidimensional data to one dimension while preserving locality of the data points (two points close together in multidimensions with high probability lie also close together in Morton order). It is named in France after Henri Lebesgue, who studied it in 1904, and named in the United States after Guy Macdonald Morton, who first applied the order to file sequencing in 1966. The z-value of a point in multidimensions is simply calculated by bit interleaving the binary representations of its coordinate values. However, when querying a multidimensional search range in these data, using binary search is not really efficient: It is necessary for calculating, from a point encountered in the data structure, the next possible Z-value which is in the multidimensional search range, called BIGMIN. The BIGMIN problem has first been stated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantor Set
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883. Through consideration of this set, Cantor and others helped lay the foundations of modern point-set topology. The most common construction is the Cantor ternary set, built by removing the middle third of a line segment and then repeating the process with the remaining shorter segments. Cantor mentioned this ternary construction only in passing, as an example of a perfect set that is nowhere dense. More generally, in topology, a Cantor space is a topological space homeomorphic to the Cantor ternary set (equipped with its subspace topology). The Cantor set is naturally homeomorphic to the countable product ^ of the discrete two-point space \underline 2 . By a theorem of L. E. J. Brouwer, this is equivalent to being perfect, nonempty, compac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image Of A Function
In mathematics, for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y. More generally, evaluating f at each element of a given subset A of its domain X produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain Y is the set of all elements of X that map to a member of B. The image of the function f is the set of all output values it may produce, that is, the image of X. The preimage of f is the preimage of the codomain Y. Because it always equals X (the domain of f), it is rarely used. Image and inverse image may also be defined for general binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y. Image of an element If x is a member of X, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Injective Function
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, implies ). In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. A func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]