Quasiperiodic Tiling
   HOME
*





Quasiperiodic Tiling
A quasiperiodic tiling is a tiling of the plane that exhibits local periodicity under some transformations: every finite subset of its tiles reappears infinitely often throughout the tiling, but there is no nontrivial way of superimposing the whole tiling onto itself so that all tiles overlap perfectly. See * Aperiodic tiling and Penrose tiling for a mathematical viewpoint. * Quasicrystal A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical cr ... for a physics viewpoint. Tessellation {{sia, mathematics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasiperiodic
Quasiperiodicity is the property of a system that displays irregular periodicity. Periodic behavior is defined as recurring at regular intervals, such as "every 24 hours". Quasiperiodic behavior is a pattern of recurrence with a component of unpredictability that does not lend itself to precise measurement. It is different from the mathematical concept of an almost periodic function, which has increasing regularity over multiple periods. The mathematical definition of quasiperiodic function is a completely different concept; the two should not be confused. Climatology Climate oscillations that appear to follow a regular pattern but which do not have a fixed period are called ''quasiperiodic''. Within a dynamical system such as the ocean-atmosphere oscillations may occur regularly, when they are forced by a regular external forcing: for example, the familiar winter-summer cycle is forced by variations in sunlight from the (very close to perfectly) periodic motion of the earth around ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tessellation
A tessellation or tiling is the covering of a surface, often a plane (mathematics), plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to high-dimensional spaces, higher dimensions and a variety of geometries. A periodic tiling has a repeating pattern. Some special kinds include ''regular tilings'' with regular polygonal tiles all of the same shape, and ''semiregular tilings'' with regular tiles of more than one shape and with every corner identically arranged. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups. A tiling that lacks a repeating pattern is called "non-periodic". An ''aperiodic tiling'' uses a small set of tile shapes that cannot form a repeating pattern. A ''tessellation of space'', also known as a space filling or honeycomb, can be defined in the geometry of higher dimensions. A real physical tessellation is a tiling made of materials such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aperiodic Tiling
An aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types (or prototiles) is aperiodic if copies of these tiles can form only non- periodic tilings. The Penrose tilings are the best-known examples of aperiodic tilings. Aperiodic tilings serve as mathematical models for quasicrystals, physical solids that were discovered in 1982 by Dan Shechtman who subsequently won the Nobel prize in 2011. However, the specific local structure of these materials is still poorly understood. Several methods for constructing aperiodic tilings are known. Definition and illustration Consider a periodic tiling by unit squares (it looks like infinite graph paper). Now cut one square into two rectangles. The tiling obtained in this way is non-periodic: there is no non-zero shift that leaves this tiling fixed. But clearly this example is much less interesting than the Penrose tiling. In order t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Penrose Tiling
A Penrose tiling is an example of an aperiodic tiling. Here, a ''tiling'' is a covering of the plane by non-overlapping polygons or other shapes, and ''aperiodic'' means that shifting any tiling with these shapes by any finite distance, without rotation, cannot produce the same tiling. However, despite their lack of translational symmetry, Penrose tilings may have both reflection symmetry and fivefold rotational symmetry. Penrose tilings are named after mathematician and physicist Roger Penrose, who investigated them in the 1970s. There are several different variations of Penrose tilings with different tile shapes. The original form of Penrose tiling used tiles of four different shapes, but this was later reduced to only two shapes: either two different rhombi, or two different quadrilaterals called kites and darts. The Penrose tilings are obtained by constraining the ways in which these shapes are allowed to fit together in a way that avoids periodic tiling. This may be done in s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quasicrystal
A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical crystallographic restriction theorem, can possess only two-, three-, four-, and six-fold rotational symmetries, the Bragg diffraction pattern of quasicrystals shows sharp peaks with other symmetry orders—for instance, five-fold. Aperiodic tilings were discovered by mathematicians in the early 1960s, and, some twenty years later, they were found to apply to the study of natural quasicrystals. The discovery of these aperiodic forms in nature has produced a paradigm shift in the field of crystallography. In crystallography the quasicrystals were predicted in 1981 by a five-fold symmetry study of Alan Lindsay Mackay,—that also brought in 1982, with the crystallographic Fourier transform of a Penrose tiling,Alan L. Mackay, "Crystallography ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]