HOME
*





Quasinilpotent Operator
In operator theory, a bounded operator ''T'' on a Hilbert space is said to be nilpotent if ''Tn'' = 0 for some ''n''. It is said to be quasinilpotent or topologically nilpotent if its spectrum ''σ''(''T'') = . Examples In the finite-dimensional case, i.e. when ''T'' is a square matrix with complex entries, ''σ''(''T'') = if and only if ''T'' is similar to a matrix whose only nonzero entries are on the superdiagonal, by the Jordan canonical form. In turn this is equivalent to ''Tn'' = 0 for some ''n''. Therefore, for matrices, quasinilpotency coincides with nilpotency. This is not true when ''H'' is infinite-dimensional. Consider the Volterra operator, defined as follows: consider the unit square ''X'' = ,1× ,1⊂ R2, with the Lebesgue measure ''m''. On ''X'', define the (kernel) function ''K'' by :K(x,y) = \left\{ \begin{matrix} 1, & \mbox{if} \; x \geq y\\ 0, & \mbox{otherwise}. \end{matrix} \right. The Volterra operator is the corresponding integ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator Theory
In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra. The description of operator algebras is part of operator theory. Single operator theory Single operator theory deals with the properties and classification of operators, considered one at a time. For example, the classification of normal operators in terms of their spectra falls into this category. Spectrum of operators The spectral theorem is any of a number of results about linear operators or about matrices. In broad terms the spectral theorem provides cond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilpotent
In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term was introduced by Benjamin Peirce in the context of his work on the classification of algebras. Examples *This definition can be applied in particular to square matrices. The matrix :: A = \begin 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end :is nilpotent because A^3=0. See nilpotent matrix for more. * In the factor ring \Z/9\Z, the equivalence class of 3 is nilpotent because 32 is congruent to 0 modulo 9. * Assume that two elements a and b in a ring R satisfy ab=0. Then the element c=ba is nilpotent as \beginc^2&=(ba)^2\\ &=b(ab)a\\ &=0.\\ \end An example with matrices (for ''a'', ''b''):A = \begin 0 & 1\\ 0 & 1 \end, \;\; B =\begin 0 & 1\\ 0 & 0 \end. Here AB=0 and BA=B. *By definition, any element of a nilsemigroup is nilpotent. Properties No nilpotent element c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum (functional Analysis)
In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number \lambda is said to be in the spectrum of a bounded linear operator T if T-\lambda I is not invertible, where I is the identity operator. The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics. The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional elements in its spectrum, and may have no eigenvalues. For example, consider the right shift operator ''R'' on the Hilbert space ℓ2, :(x_1, x_2, \dots) \mapsto (0, x_1, x_2, \dots). This has no eigenvalues, since if ''Rx''=''λx'' then by expanding this expression we see ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jordan Canonical Form
In linear algebra, a Jordan normal form, also known as a Jordan canonical form (JCF), is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis. Such a matrix has each non-zero off-diagonal entry equal to 1, immediately above the main diagonal (on the superdiagonal), and with identical diagonal entries to the left and below them. Let ''V'' be a vector space over a field ''K''. Then a basis with respect to which the matrix has the required form exists if and only if all eigenvalues of the matrix lie in ''K'', or equivalently if the characteristic polynomial of the operator splits into linear factors over ''K''. This condition is always satisfied if ''K'' is algebraically closed (for instance, if it is the field of complex numbers). The diagonal entries of the normal form are the eigenvalues (of the operator), and the number of times each eigenvalue occurs is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Volterra Operator
In mathematics, in the area of functional analysis and operator theory, the Volterra operator, named after Vito Volterra, is a bounded linear operator on the space ''L''2 ,1of complex-valued square-integrable functions on the interval ,1 On the subspace ''C'' ,1of continuous functions it represents indefinite integration. It is the operator corresponding to the Volterra integral equations. Definition The Volterra operator, ''V'', may be defined for a function ''f'' ∈ ''L''2 ,1and a value ''t'' ∈  ,1 as :V(f)(t) = \int_^ f(s)\, ds. Properties *''V'' is a bounded linear operator between Hilbert spaces, with Hermitian adjoint V^*(f)(t) = \int_^ f(s)\, ds. *''V'' is a Hilbert–Schmidt operator, hence in particular is compact. *''V'' has no eigenvalues and therefore, by the spectral theory of compact operators, its spectrum ''σ''(''V'') = . *''V'' is a quasinilpotent operator (that is, the spectral radius, ''ρ''(''V''), is zero), but it is not nilpotent. *Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Operator
An integral operator is an operator that involves integration. Special instances are: * The operator of integration itself, denoted by the integral symbol * Integral linear operators, which are linear operators induced by bilinear forms involving integrals * Integral transform In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in ...s, which are maps between two function spaces, which involve integrals {{mathanalysis-stub Integral calculus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Operator On Hilbert Space
In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach. For example, the spectral theory of compact operators on Banach spaces takes a form that is very similar to the Jordan canonical form of matrices. In the context of Hilbert spaces, a square matrix is unitarily diagonalizable if and only if it is normal. A corresponding result holds for normal compact operators on Hilbert spaces. More generally, the compactness assumption can be dropped. As ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]