Quantum History
In quantum mechanics, the consistent histories (also referred to as decoherent histories) approach is intended to give a modern interpretation of quantum mechanics, generalising the conventional Copenhagen interpretation and providing a natural interpretation of quantum cosmology. This interpretation of quantum mechanics is based on a consistency criterion that then allows probabilities to be assigned to various alternative histories of a system such that the probabilities for each history obey the rules of classical probability while being consistent with the Schrödinger equation. In contrast to some interpretations of quantum mechanics, particularly the Copenhagen interpretation, the framework does not include "wavefunction collapse" as a relevant description of any physical process, and emphasizes that measurement theory is not a fundamental ingredient of quantum mechanics. Histories A ''homogeneous history'' H_i (here i labels different histories) is a sequence of Propositio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interpretation Of Quantum Mechanics
An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments, there exist a number of contending schools of thought over their interpretation. These views on interpretation differ on such fundamental questions as whether quantum mechanics is deterministic or stochastic, which elements of quantum mechanics can be considered real, and what the nature of measurement is, among other matters. Despite nearly a century of debate and experiment, no consensus has been reached among physicists and philosophers of physics concerning which interpretation best "represents" reality. History The definition of quantum theorists' terms, such as ''wave function'' and ''matrix mechanics'', progressed through many stages. For instance, Erwin Schrödinger originally viewed the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heisenberg Picture
In physics, the Heisenberg picture (also called the Heisenberg representation) is a formulation (largely due to Werner Heisenberg in 1925) of quantum mechanics in which the operators (observables and others) incorporate a dependency on time, but the state vectors are time-independent, an arbitrary fixed basis rigidly underlying the theory. It stands in contrast to the Schrödinger picture in which the operators are constant, instead, and the states evolve in time. The two pictures only differ by a basis change with respect to time-dependency, which corresponds to the difference between active and passive transformations. The Heisenberg picture is the formulation of matrix mechanics in an arbitrary basis, in which the Hamiltonian is not necessarily diagonal. It further serves to define a third, hybrid, picture, the interaction picture. Mathematical details In the Heisenberg picture of quantum mechanics the state vectors , ''ψ''⟩ do not change with time, while observables ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stanford Encyclopedia Of Philosophy
The ''Stanford Encyclopedia of Philosophy'' (''SEP'') combines an online encyclopedia of philosophy with peer-reviewed publication of original papers in philosophy, freely accessible to Internet users. It is maintained by Stanford University. Each entry is written and maintained by an expert in the field, including professors from many academic institutions worldwide. Authors contributing to the encyclopedia give Stanford University the permission to publish the articles, but retain the copyright to those articles. Approach and history As of August 5th, 2022, the ''SEP'' has 1,774 published entries. Apart from its online status, the encyclopedia uses the traditional academic approach of most encyclopedias and academic journals to achieve quality by means of specialist authors selected by an editor or an editorial committee that is competent (although not necessarily considered specialists) in the field covered by the encyclopedia and peer review. The encyclopedia was created in 1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
HPO Formalism
The history projection operator (HPO) formalism is an approach to temporal quantum logic developed by Chris Isham. It deals with the logical structure of quantum mechanical propositions asserted at different points in time. Introduction In standard quantum mechanics a physical system is associated with a Hilbert space \mathcal. States of the system at a fixed time are represented by normalised vectors in the space and physical observables are represented by Hermitian operators on \mathcal. A physical proposition \,P about the system at a fixed time can be represented by an orthogonal projection operator \hat on \mathcal (See quantum logic). This representation links together the lattice operations in the lattice of logical propositions and the lattice of projection operators on a Hilbert space (See quantum logic). The HPO formalism is a natural extension of these ideas to propositions about the system that are concerned with more than one time. History propositions Hom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
EPR Paradox
EPR may refer to: Science and technology * EPR (nuclear reactor), European Pressurised-Water Reactor * EPR paradox (Einstein–Podolsky–Rosen paradox), in physics * Earth potential rise, in electrical engineering * East Pacific Rise, a mid-oceanic ridge * Electron paramagnetic resonance * Engine pressure ratio,of a jet engine * Ethylene propylene rubber * Yevpatoria RT-70 radio telescope (Evpatoria planetary radar) * Bernays–Schönfinkel class or effectively propositional, in mathematical logic * Endpoint references in Web addressing * Ethnic Power Relations, dataset of ethnic groups * ePrivacy Regulation (ePR), proposal for the regulation of various privacy-related topics, mostly in relation to electronic communications within the European Union Medicine * Enhanced permeability and retention effect, a controversial concept in cancer research * Emergency Preservation and Resuscitation, a medical procedure * Electronic patient record Environment * UNECE Environmental Perform ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Philosophy
''Quantum Philosophy'' is a 2002 book by the physicist Roland Omnès, in which he aims to show the non-specialist reader how modern developments in quantum mechanics allow the recovery of our common sense view of the world. Book contents * Section I - a review of mathematics, epistemology and science from the classical to the early modern period. * Section II - a review of the ineluctable rise of formalism in mathematics and in fundamental physical science, which, Omnès argues, was not a choice, but was forced on researchers by the nature of the subject matter. * Section III - the central section of the book, in which the recovery of common sense, as outlined below, is presented. * Section IV - a short section of reflections on possible future steps. Brief summary of Omnès' central argument Omnès' project is not quite as it at first sounds. He is not trying to show that quantum mechanics itself can be understood in a common sense framework, quite the opposite. He argues ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
James Hartle
James Burkett Hartle (August 20, 1939) is an American physicist. He has been a professor of physics at the University of California, Santa Barbara since 1966, and he is currently a member of the external faculty of the Santa Fe Institute. Hartle is known for his work in general relativity, astrophysics, and interpretation of quantum mechanics. Work In collaboration with Murray Gell-Mann and others, Hartle developed an alternative to the standard Copenhagen interpretation, more general and appropriate to quantum cosmology, based on consistent histories. With Dieter Brill in 1964, he discovered the Brill–Hartle geon, an approximate solution realizing Wheeler's suggestion of a hypothetical phenomenon in which a gravitational wave packet is confined to a compact region of spacetime by the gravitational attraction of its own field energy. With Kip Thorne, Hartle derived from general relativity the laws of motion and precession of black holes and other relativistic bodies, includi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Murray Gell-Mann
Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American physicist who received the 1969 Nobel Prize in Physics for his work on the theory of elementary particles. He was the Robert Andrews Millikan Professor of Theoretical Physics Emeritus at the California Institute of Technology, a distinguished fellow and one of the co-founders of the Santa Fe Institute, a professor of physics at the University of New Mexico, and the Presidential Professor of Physics and Medicine at the University of Southern California. Gell-Mann spent several periods at CERN, a nuclear research facility in Switzerland, among others as a John Simon Guggenheim Memorial Foundation fellow in 1972. Early life and education Gell-Mann was born in Lower Manhattan to a family of Jewish immigrants from the Austro-Hungarian Empire, specifically from Czernowitz in present-day Ukraine. His parents were Pauline (née Reichstein) and Arthur Isidore Gell-Mann, who taught English as a second language ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robert B
The name Robert is an ancient Germanic given name, from Proto-Germanic "fame" and "bright" (''Hrōþiberhtaz''). Compare Old Dutch ''Robrecht'' and Old High German ''Hrodebert'' (a compound of '' Hruod'' ( non, Hróðr) "fame, glory, honour, praise, renown" and ''berht'' "bright, light, shining"). It is the second most frequently used given name of ancient Germanic origin. It is also in use as a surname. Another commonly used form of the name is Rupert. After becoming widely used in Continental Europe it entered England in its Old French form ''Robert'', where an Old English cognate form (''Hrēodbēorht'', ''Hrodberht'', ''Hrēodbēorð'', ''Hrœdbœrð'', ''Hrœdberð'', ''Hrōðberχtŕ'') had existed before the Norman Conquest. The feminine version is Roberta. The Italian, Portuguese, and Spanish form is Roberto. Robert is also a common name in many Germanic languages, including English, German, Dutch, Norwegian, Swedish, Scots, Danish, and Icelandic. It can be use ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian (quantum Theory)
Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian with two-electron nature ** Molecular Hamiltonian, the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule * Hamiltonian (control theory), a function used to solve a problem of optimal control for a dynamical system * Hamiltonian path, a path in a graph that visits each vertex exactly once * Hamiltonian group, a non-abelian group the subgroups of which are all normal * Hamiltonian economic program, the economic policies advocated by Alexander Hamilton, the first United States Secretary of the Treasury See also * Alexander Hamilton (1755 or 1757–1804), American statesman and one of the Founding Fathers of the US * Hamilton (other) Hamilton may refer to: People * Hamilton (name), a common ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Roland Omnès
Roland Omnès (born 18 February 1931), is the author of several books which aim to give non-scientists the information required to understand quantum mechanics from an everyday standpoint. Biography Omnès is currently Professor Emeritus of Theoretical Physics in the Faculté des sciences at Orsay, at the Université Paris-Sud XI. He has been instrumental in developing the consistent histories and quantum decoherence approaches in quantum mechanics. In 1959 he received the Paul-Langevin Prize. Philosophical work In his philosophical work (especially in ''Quantum Philosophy''), Omnès argues that: # "Until modern times, intuitive, rational thought was sufficient to describe the world; mathematics remained an adjunct, simply helping to make our intuitive descriptions more precise." # "In the late 19th and early 20th centuries, we arrived at a Fracture between common sense and our best descriptions of reality. Our formal description became the truest picture (most consistent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Decoherence
Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. A definite phase relationship is necessary to perform quantum computing on quantum information encoded in quantum states. Coherence is preserved under the laws of quantum physics. If a quantum system were perfectly isolated, it would maintain coherence indefinitely, but it would be impossible to manipulate or investigate it. If it is not perfectly isolated, for example during a measurement, coherence is shared with the environment and appears to be lost with time; a process called quantum decoherence. As a result of this process, quantum behavior is apparently lost, just as ene ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |