Quantum Dynamical Semigroup
In quantum mechanics, a quantum Markov semigroup describes the dynamics in a Markovian open quantum system. The axiomatic definition of the prototype of quantum Markov semigroups was first introduced by A. M. Kossakowski in 1972, and then developed by V. Gorini, A. M. Kossakowski, E. C. G. Sudarshan and Göran Lindblad in 1976. Motivation An ideal quantum system is not realistic because it should be completely isolated while, in practice, it is influenced by the coupling to an environment, which typically has a large number of degrees of freedom (for example an atom interacting with the surrounding radiation field). A complete microscopic description of the degrees of freedom of the environment is typically too complicated. Hence, one looks for simpler descriptions of the dynamics of the open system. In principle, one should investigate the unitary dynamics of the total system, i.e. the system and the environment, to obtain information about the reduced system of interest by av ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Completely Positive Map
In mathematics a positive map is a map between C*-algebras that sends positive elements to positive elements. A completely positive map is one which satisfies a stronger, more robust condition. Definition Let A and B be C*-algebras. A linear map \phi: A\to B is called positive map if \phi maps positive elements to positive elements: a\geq 0 \implies \phi(a)\geq 0. Any linear map \phi:A\to B induces another map :\textrm \otimes \phi : \mathbb^ \otimes A \to \mathbb^ \otimes B in a natural way. If \mathbb^\otimes A is identified with the C*-algebra A^ of k\times k-matrices with entries in A, then \textrm\otimes\phi acts as : \begin a_ & \cdots & a_ \\ \vdots & \ddots & \vdots \\ a_ & \cdots & a_ \end \mapsto \begin \phi(a_) & \cdots & \phi(a_) \\ \vdots & \ddots & \vdots \\ \phi(a_) & \cdots & \phi(a_) \end. We say that \phi is k-positive if \textrm_ \otimes \phi is a positive map, and \phi is called completely positive if \phi is k-positive for all k. Properties * Positi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (from the definition , being equal to the identity if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of ''G'' generated by all commutators is closed and is called the ''derived group'' or the ''commutator subgroup'' of ''G''. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group. The definition of the commutator above is used throughout this article, but many other group theorists define the commutator as :. Identities (group theory) Commutator identities are an important tool in group theory. The expr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Self-adjoint Operator
In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. If ''V'' is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of ''A'' is a Hermitian matrix, i.e., equal to its conjugate transpose ''A''. By the finite-dimensional spectral theorem, ''V'' has an orthonormal basis such that the matrix of ''A'' relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension. Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as positi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bounded Operator
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector spaces (a special type of TVS), then L is bounded if and only if there exists some M > 0 such that for all x \in X, \, Lx\, _Y \leq M \, x\, _X. The smallest such M is called the operator norm of L and denoted by \, L\, . A bounded operator between normed spaces is continuous and vice versa. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces. Outside of functional analysis, when a function f : X \to Y is called " bounded" then this usually means that its image f(X) is a bounded subset of its codomain. A linear map has this property if and only if it is identically 0. Consequently, in functional analysis, when a linear operator is called "bounded" then it is never meant in this a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Operator Theory
In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra. The description of operator algebras is part of operator theory. Single operator theory Single operator theory deals with the properties and classification of operators, considered one at a time. For example, the classification of normal operators in terms of their spectra falls into this category. Spectrum of operators The spectral theorem is any of a number of results about linear operators or about matrices. In broad terms the spectral theorem provides cond ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Stochastic Calculus
Quantum stochastic calculus is a generalization of stochastic calculus to noncommuting variables. The tools provided by quantum stochastic calculus are of great use for modeling the random evolution of systems undergoing measurement, as in quantum trajectories. Just as the Lindblad master equation provides a quantum generalization to the Fokker–Planck equation, quantum stochastic calculus allows for the derivation of quantum stochastic differential equations (QSDE) that are analogous to classical Langevin equations. For the remainder of this article ''stochastic calculus'' will be referred to as ''classical stochastic calculus'', in order to clearly distinguish it from quantum stochastic calculus. Heat baths An important physical scenario in which a quantum stochastic calculus is needed is the case of a system interacting with a heat bath. It is appropriate in many circumstances to model the heat bath as an assembly of harmonic oscillators. One type of interaction between ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robin Lyth Hudson
Robin Lyth Hudson was a British mathematician notable for his contribution to quantum probability. Education and career Robin Lyth Hudson received his Ph.D. from the University of Oxford in 1966 under John T. Lewis with a thesis entitled ''Generalised Translation-Invariant Mechanics''. He was appointed assistant lecturer at the University of Nottingham in 1964, promoted to a chair in 1985 and served as Head of Department from 1987 to 1990. He spent sabbatical semesters in Heidelberg (1978), Austin Texas (1983) and Boulder Colorado (1996). After taking early retirement in 1997, he held part-time research posts at Nottingham Trent University (1997-2005), the Slovak Academy of Sciences (1997-2000) and Loughborough University (2005–21), and a visiting professorship at the University of Łódź (2002) which awarded him an honorary doctorate in 2013. Hudson was a mathematical physicist who was one of the pioneers of quantum probability. An early result, now known as Hudson’s theor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Contraction Semigroup
In mathematical analysis, a C0-semigroup, ''C''0-semigroup Γ(''t''), ''t'' ≥ 0, is called a quasicontraction semigroup if there is a constant ''ω'' such that , , Γ(''t''), , ≤ exp(''ωt'') for all ''t'' ≥ 0. Γ(''t'') is called a contraction semigroup if , , Γ(''t''), , ≤ 1 for all ''t'' ≥ 0. See also * Contraction (operator theory) * Hille-Yosida theorem * Lumer-Phillips theorem References * Functional analysis Semigroup theory {{mathanalysis-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive Element
In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator A acting on an inner product space is called positive-semidefinite (or ''non-negative'') if, for every x \in \mathop(A), \langle Ax, x\rangle \in \mathbb and \langle Ax, x\rangle \geq 0, where \mathop(A) is the domain of A. Positive-semidefinite operators are denoted as A\ge 0. The operator is said to be positive-definite, and written A>0, if \langle Ax,x\rangle>0, for all x\in\mathop(A) \setminus \. In physics (specifically quantum mechanics), such operators represent quantum states, via the density matrix formalism. Cauchy–Schwarz inequality If A \geq 0, then :\left, \langle Ax,y\rangle \^2 \leq \langle Ax,x\rangle \langle Ay,y\rangle. Indeed, let \varepsilon > 0. Applying Cauchy–Schwarz inequality to the inner product : (x,y)_\varepsilon \stackrel\ \langle (A+\varepsilon\cdot \mathbf)x,y\rangle as \varepsilon \downarrow 0 proves the claim. It ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Manifold
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. In an affine space, there is no distinguished point that serves as an origin. Hence, no vector has a fixed origin and no vector can be uniquely associated to a point. In an affine space, there are instead ''displacement vectors'', also called ''translation'' vectors or simply ''translations'', between two points of the space. Thus it makes sense to subtract two points of the space, giving a translation vector, but it does not make sense to add two points of the space. Likewise, it makes sense to add a displacement vector to a point of an affine space, resulting in a new point translated from the starting point by that vector. Any vector space may be viewed as an affine spac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dense Set
In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation). Formally, A is dense in X if the smallest closed subset of X containing A is X itself. The of a topological space X is the least cardinality of a dense subset of X. Definition A subset A of a topological space X is said to be a of X if any of the following equivalent conditions are satisfied: The smallest closed subset of X containing A is X itself. The closure of A in X is equal to X. That is, \operatorname_X A = X. The interior of the complement of A is empty. That is, \operatorname_X (X \setminus A) = \varnothing. Every point in X either ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |