Quality Of Data
   HOME
*





Quality Of Data
Quality of Data (QoD) is a designation coined by L. Veiga, that specifies and describes the required Quality of Service of a distributed storage system from the Consistency point of view of its data. It can be used to support big data Though used sometimes loosely partly because of a lack of formal definition, the interpretation that seems to best describe Big data is the one associated with large body of information that we could not comprehend when used only in smaller am ... management frameworks, Workflow management, and HPC systems (mainly for data replication and consistency). It takes into account data semantics, namely the Time interval of data freshness, the Sequence of tolerable number of outstanding versions of the data read before ore refresh, and the Value divergence allowed before displaying it. Initially it was based on a model from an existing research work regarding vector-field Consistency, awarded the best-paper prize in the ACM/IFIP/Usenix Middleware Confer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big Data
Though used sometimes loosely partly because of a lack of formal definition, the interpretation that seems to best describe Big data is the one associated with large body of information that we could not comprehend when used only in smaller amounts. In it primary definition though, Big data refers to data sets that are too large or complex to be dealt with by traditional data-processing application software. Data with many fields (rows) offer greater statistical power, while data with higher complexity (more attributes or columns) may lead to a higher false discovery rate. Big data analysis challenges include capturing data, data storage, data analysis, search, sharing, transfer, visualization, querying, updating, information privacy, and data source. Big data was originally associated with three key concepts: ''volume'', ''variety'', and ''velocity''. The analysis of big data presents challenges in sampling, and thus previously allowing for only observations and sampling. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Apache HBase
HBase is an open-source non-relational distributed database modeled after Google's Bigtable and written in Java. It is developed as part of Apache Software Foundation's Apache Hadoop project and runs on top of HDFS (Hadoop Distributed File System) or Alluxio, providing Bigtable-like capabilities for Hadoop. That is, it provides a fault-tolerant way of storing large quantities of sparse data (small amounts of information caught within a large collection of empty or unimportant data, such as finding the 50 largest items in a group of 2 billion records, or finding the non-zero items representing less than 0.1% of a huge collection). HBase features compression, in-memory operation, and Bloom filters on a per-column basis as outlined in the original Bigtable paper. Tables in HBase can serve as the input and output for MapReduce jobs run in Hadoop, and may be accessed through the Java API but also through REST, Avro or Thrift gateway APIs. HBase is a wide-column store and has been w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Middleware
Middleware is a type of computer software that provides services to software applications beyond those available from the operating system. It can be described as "software glue". Middleware makes it easier for software developers to implement communication and input/output, so they can focus on the specific purpose of their application. It gained popularity in the 1980s as a solution to the problem of how to link newer applications to older legacy systems, although the term had been in use since 1968. In distributed applications The term is most commonly used for software that enables communication and management of data in distributed applications. An IETF workshop in 2000 defined middleware as "those services found above the transport (i.e. over TCP/IP) layer set of services but below the application environment" (i.e. below application-level APIs). In this more specific sense ''middleware'' can be described as the dash ("-") in '' client-server'', or the ''-to-'' in ''peer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Data Quality
Data quality refers to the state of qualitative or quantitative pieces of information. There are many definitions of data quality, but data is generally considered high quality if it is "fit for tsintended uses in operations, decision making and planning". Moreover, data is deemed of high quality if it correctly represents the real-world construct to which it refers. Furthermore, apart from these definitions, as the number of data sources increases, the question of internal data consistency becomes significant, regardless of fitness for use for any particular external purpose. People's views on data quality can often be in disagreement, even when discussing the same set of data used for the same purpose. When this is the case, data governance is used to form agreed upon definitions and standards for data quality. In such cases, data cleansing, including standardization, may be required in order to ensure data quality. Definitions Defining data quality is difficult due to the ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]