Quadrifolium
The quadrifolium (also known as four-leaved clover) is a type of rose curve with an angular frequency of 2. It has the polar equation: :r = a\cos(2\theta), \, with corresponding algebraic equation :(x^2+y^2)^3 = a^2(x^2-y^2)^2. \, Rotated counter-clockwise by 45°, this becomes :r = a\sin(2\theta) \, with corresponding algebraic equation :(x^2+y^2)^3 = 4a^2x^2y^2. \, In either form, it is a plane algebraic curve of genus zero. The dual curve to the quadrifolium is :(x^2-y^2)^4 + 837(x^2+y^2)^2 + 108x^2y^2 = 16(x^2+7y^2)(y^2+7x^2)(x^2+y^2)+729(x^2+y^2). \, The area inside the quadrifolium is \tfrac 12 \pi a^2, which is exactly half of the area of the circumcircle of the quadrifolium. The perimeter of the quadrifolium is :8a\operatorname\left(\frac\right)=4\pi a\left(\frac+\frac\right) where \operatorname(k) is the complete elliptic integral of the second kind with modulus k, \operatorname is the arithmetic–geometric mean and ' denotes the derivative In ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadrifolium
The quadrifolium (also known as four-leaved clover) is a type of rose curve with an angular frequency of 2. It has the polar equation: :r = a\cos(2\theta), \, with corresponding algebraic equation :(x^2+y^2)^3 = a^2(x^2-y^2)^2. \, Rotated counter-clockwise by 45°, this becomes :r = a\sin(2\theta) \, with corresponding algebraic equation :(x^2+y^2)^3 = 4a^2x^2y^2. \, In either form, it is a plane algebraic curve of genus zero. The dual curve to the quadrifolium is :(x^2-y^2)^4 + 837(x^2+y^2)^2 + 108x^2y^2 = 16(x^2+7y^2)(y^2+7x^2)(x^2+y^2)+729(x^2+y^2). \, The area inside the quadrifolium is \tfrac 12 \pi a^2, which is exactly half of the area of the circumcircle of the quadrifolium. The perimeter of the quadrifolium is :8a\operatorname\left(\frac\right)=4\pi a\left(\frac+\frac\right) where \operatorname(k) is the complete elliptic integral of the second kind with modulus k, \operatorname is the arithmetic–geometric mean and ' denotes the derivative In ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rose (mathematics)
In mathematics, a rose or rhodonea curve is a sinusoid specified by either the cosine or sine functions with no phase angle that is plotted in polar coordinates. Rose curves or "rhodonea" were named by the Italian mathematician who studied them, Guido Grandi, between the years 1723 and 1728. General overview Specification A rose is the set of points in polar coordinates specified by the polar equation :r=a\cos(k\theta) or in Cartesian coordinates using the parametric equations :x=r\cos(\theta)=a\cos(k\theta)\cos(\theta) :y=r\sin(\theta)=a\cos(k\theta)\sin(\theta). Roses can also be specified using the sine function. Since :\sin(k \theta) = \cos\left( k \theta - \frac \right) = \cos\left( k \left( \theta-\frac \right) \right). Thus, the rose specified by \,r=a\sin(k\theta) is identical to that specified by \,r = a\cos(k\theta) rotated counter-clockwise by \pi/2k radians, which is one-quarter the period of either sinusoid. Since they are specified using the cosine or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rose Curve Animation With Gears N2 D1
A rose is either a woody perennial flowering plant of the genus ''Rosa'' (), in the family Rosaceae (), or the flower it bears. There are over three hundred species and tens of thousands of cultivars. They form a group of plants that can be erect shrubs, climbing, or trailing, with stems that are often armed with sharp prickles. Their flowers vary in size and shape and are usually large and showy, in colours ranging from white through yellows and reds. Most species are native to Asia, with smaller numbers native to Europe, North America, and northwestern Africa. Species, cultivars and hybrids are all widely grown for their beauty and often are fragrant. Roses have acquired cultural significance in many societies. Rose plants range in size from compact, miniature roses, to climbers that can reach seven meters in height. Different species hybridize easily, and this has been used in the development of the wide range of garden roses. Etymology The name ''rose'' comes from L ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Angular Frequency
In physics, angular frequency "''ω''" (also referred to by the terms angular speed, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. It refers to the angular displacement per unit time (for example, in rotation) or the rate of change of the phase of a sinusoidal waveform (for example, in oscillations and waves), or as the rate of change of the argument of the sine function. Angular frequency (or angular speed) is the magnitude of the pseudovector quantity angular velocity.(UP1) One turn is equal to 2''π'' radians, hence \omega = \frac = , where: *''ω'' is the angular frequency (unit: radians per second), *''T'' is the period (unit: seconds), *''f'' is the ordinary frequency (unit: hertz) (sometimes ''ν''). Units In SI units, angular frequency is normally presented in radians per second, even when it does not express a rotational value. The unit hertz (Hz) is dimensionally equivalent, but by conventi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polar Equation
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the origin of a Cartesian coordinate system) is called the ''pole'', and the ray from the pole in the reference direction is the ''polar axis''. The distance from the pole is called the ''radial coordinate'', ''radial distance'' or simply ''radius'', and the angle is called the ''angular coordinate'', ''polar angle'', or ''azimuth''. Angles in polar notation are generally expressed in either degrees or radians (2 rad being equal to 360°). Grégoire de Saint-Vincent and Bonaventura Cavalieri independently introduced the concepts in the mid-17th century, though the actual term "polar coordinates" has been attributed to Gregorio Fontana in the 18th century. The initial motivation for the introduction of the polar system was the study of ci ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. More generally, an algebraic curve is an algebraic variety of dimension one. Equivalently, an algebraic curve is an algebraic variety that is birationally equivalent to an algebraic plane curve. If the curve is contained in an affine space or a projective space, one can take a projection for su ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometric Genus
In algebraic geometry, the geometric genus is a basic birational invariant of algebraic varieties and complex manifolds. Definition The geometric genus can be defined for non-singular complex projective varieties and more generally for complex manifolds as the Hodge number (equal to by Serre duality), that is, the dimension of the canonical linear system plus one. In other words for a variety of complex dimension it is the number of linearly independent holomorphic -forms to be found on .Danilov & Shokurov (1998), p. 53/ref> This definition, as the dimension of : then carries over to any base field, when is taken to be the sheaf of Kähler differentials and the power is the (top) exterior power, the canonical line bundle. The geometric genus is the first invariant of a sequence of invariants called the plurigenera. Case of curves In the case of complex varieties, (the complex loci of) non-singular curves are Riemann surfaces. The algebraic definition of genus ag ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual Curve
In projective geometry, a dual curve of a given plane curve is a curve in the dual projective plane consisting of the set of lines tangent to . There is a map from a curve to its dual, sending each point to the point dual to its tangent line. If is algebraic then so is its dual and the degree of the dual is known as the ''class'' of the original curve. The equation of the dual of , given in line coordinates, is known as the ''tangential equation'' of . Duality is an involution: the dual of the dual of is the original curve . The construction of the dual curve is the geometrical underpinning for the Legendre transformation in the context of Hamiltonian mechanics. Equations Let be the equation of a curve in homogeneous coordinates on the projective plane. Let be the equation of a line, with being designated its line coordinatesin a dual projective plane. The condition that the line is tangent to the curve can be expressed in the form which is the tangential equation of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Perimeter
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden. The perimeter of a wheel/circle (its circumference) describes how far it will roll in one revolution. Similarly, the amount of string wound around a spool is related to the spool's perimeter; if the length of the string was exact, it would equal the perimeter. Formulas The perimeter is the distance around a shape. Perimeters for more general shapes can be calculated, as any path, with \int_0^L \mathrms, where L is the length of the path and ds is an infinitesimal line element. Both of these must be replaced by algebraic forms in order to be practically calculated. If the perimeter is given as a closed piecewise smooth plane curv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Integral
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an "elliptic integral" as any function which can be expressed in the form f(x) = \int_^ R \left(t, \sqrt \right) \, dt, where is a rational function of its two arguments, is a polynomial of degree 3 or 4 with no repeated roots, and is a constant. In general, integrals in this form cannot be expressed in terms of elementary functions. Exceptions to this general rule are when has repeated roots, or when contains no odd powers of or if the integral is pseudo-elliptic. However, with the appropriate reduction formula, every elliptic integral can be brought into a form that involves integrals over rational functions and the three Legen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |