HOME
*





Quadratic Residue Code
A quadratic residue code is a type of cyclic code. Examples Examples of quadratic residue codes include the (7,4) Hamming code over GF(2), the (23,12) binary Golay code over GF(2) and the (11,6) ternary Golay code over GF(3). Constructions There is a quadratic residue code of length p over the finite field GF(l) whenever p and l are primes, p is odd, and l is a quadratic residue modulo p. Its generator polynomial as a cyclic code is given by :f(x)=\prod_(x-\zeta^j) where Q is the set of quadratic residues of p in the set \ and \zeta is a primitive pth root of unity in some finite extension field of GF(l). The condition that l is a quadratic residue of p ensures that the coefficients of f lie in GF(l). The dimension of the code is (p+1)/2. Replacing \zeta by another primitive p-th root of unity \zeta^r either results in the same code or an equivalent code, according to whether or not r is a quadratic residue of p. An alternative construction avoids roots of unity. Define :g(x)=c+ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclic Code
In coding theory, a cyclic code is a block code, where the circular shifts of each codeword gives another word that belongs to the code. They are error-correcting codes that have algebraic properties that are convenient for efficient error detection and correction. Definition Let \mathcal be a linear code over a finite field (also called '' Galois field'') GF(q) of block length n. \mathcal is called a cyclic code if, for every codeword c=(c_1,\ldots,c_n) from \mathcal, the word (c_n,c_1,\ldots,c_) in GF(q)^n obtained by a cyclic right shift of components is again a codeword. Because one cyclic right shift is equal to n-1 cyclic left shifts, a cyclic code may also be defined via cyclic left shifts. Therefore the linear code \mathcal is cyclic precisely when it is invariant under all cyclic shifts. Cyclic codes have some additional structural constraint on the codes. They are based on Galois fields and because of their structural properties they are very useful for error control ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamming Code
In computer science and telecommunication, Hamming codes are a family of linear error-correcting codes. Hamming codes can detect one-bit and two-bit errors, or correct one-bit errors without detection of uncorrected errors. By contrast, the simple parity code cannot correct errors, and can detect only an odd number of bits in error. Hamming codes are perfect codes, that is, they achieve the highest possible rate for codes with their block length and minimum distance of three. Richard W. Hamming invented Hamming codes in 1950 as a way of automatically correcting errors introduced by punched card readers. In his original paper, Hamming elaborated his general idea, but specifically focused on the Hamming(7,4) code which adds three parity bits to four bits of data. In mathematical terms, Hamming codes are a class of binary linear code. For each integer there is a code-word with block length and message length . Hence the rate of Hamming codes is , which is the highest possib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Golay Code
In mathematics and electronics engineering, a binary Golay code is a type of linear error-correcting code used in digital communications. The binary Golay code, along with the ternary Golay code, has a particularly deep and interesting connection to the theory of finite sporadic groups in mathematics. These codes are named in honor of Marcel J. E. Golay whose 1949 paper introducing them has been called, by E. R. Berlekamp, the "best single published page" in coding theory. There are two closely related binary Golay codes. The extended binary Golay code, ''G''24 (sometimes just called the "Golay code" in finite group theory) encodes 12 bits of data in a 24-bit word in such a way that any 3-bit errors can be corrected or any 7-bit errors can be detected. The other, the perfect binary Golay code, ''G''23, has codewords of length 23 and is obtained from the extended binary Golay code by deleting one coordinate position (conversely, the extended binary Golay code is obtained from t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ternary Golay Code
In coding theory, the ternary Golay codes are two closely related error-correcting codes. The code generally known simply as the ternary Golay code is an 1, 6, 53-code, that is, it is a linear code over a ternary alphabet; the relative distance of the code is as large as it possibly can be for a ternary code, and hence, the ternary Golay code is a perfect code. The extended ternary Golay code is a 2, 6, 6linear code obtained by adding a zero-sum check digit to the 1, 6, 5code. In finite group theory, the extended ternary Golay code is sometimes referred to as the ternary Golay code. Properties Ternary Golay code The ternary Golay code consists of 36 = 729 codewords. Its parity check matrix is : \left[ \begin 1 & 1 & 1 & 2 & 2 & 0 & 1 & 0 & 0 & 0 & 0\\ 1 & 1 & 2 & 1 & 0 & 2 & 0 & 1 & 0 & 0 & 0\\ 1 & 2 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 0\\ 1 & 2 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 0\\ 1 & 0 & 2 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end \right]. Any two different co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Residue
In number theory, an integer ''q'' is called a quadratic residue modulo ''n'' if it is congruent to a perfect square modulo ''n''; i.e., if there exists an integer ''x'' such that: :x^2\equiv q \pmod. Otherwise, ''q'' is called a quadratic nonresidue modulo ''n''. Originally an abstract mathematical concept from the branch of number theory known as modular arithmetic, quadratic residues are now used in applications ranging from acoustical engineering to cryptography and the factoring of large numbers. History, conventions, and elementary facts Fermat, Euler, Lagrange, Legendre, and other number theorists of the 17th and 18th centuries established theorems and formed conjectures about quadratic residues, but the first systematic treatment is § IV of Gauss's ''Disquisitiones Arithmeticae'' (1801). Article 95 introduces the terminology "quadratic residue" and "quadratic nonresidue", and states that if the context makes it clear, the adjective "quadratic" may be dropped. For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hamming Weight
The Hamming weight of a string is the number of symbols that are different from the zero-symbol of the alphabet used. It is thus equivalent to the Hamming distance from the all-zero string of the same length. For the most typical case, a string of bits, this is the number of 1's in the string, or the digit sum of the binary representation of a given number and the ''ℓ''₁ norm of a bit vector. In this binary case, it is also called the population count, popcount, sideways sum, or bit summation. History and usage The Hamming weight is named after Richard Hamming although he did not originate the notion. The Hamming weight of binary numbers was already used in 1899 by James W. L. Glaisher to give a formula for the number of odd binomial coefficients in a single row of Pascal's triangle. Irving S. Reed introduced a concept, equivalent to Hamming weight in the binary case, in 1954. Hamming weight is used in several disciplines including information theory, coding theor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Andrew Gleason
Andrew Mattei Gleason (19212008) was an American mathematician who made fundamental contributions to widely varied areas of mathematics, including the solution of Hilbert's fifth problem, and was a leader in reform and innovation in teaching at all levels.. Gleason's theorem in quantum logic and the Greenwood–Gleason graph, an important example in Ramsey theory, are named for him. As a young World War II naval officer, Gleason broke German and Japanese military codes. After the war he spent his entire academic career at Harvard University, from which he retired in 1992. His numerous academic and scholarly leadership posts included chairmanship of the Harvard Mathematics Department and the Harvard Society of Fellows, and presidency of the American Mathematical Society. He continued to advise the United States government on cryptographic security, and the Commonwealth of Massachusetts on education for children, almost until the end of his life. Gleason won the Newcomb Clevela ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eugene Prange
Eugene August Prange (July 30, 1917 – February 12, 2006)Obituary
at legacy.com, accessed 2013-05-05.
was an American coding theorist, a researcher at the Air Force Cambridge Research Laboratory in who "introduced many of the early fundamental ideas of algebraic coding theory" and was the first to investigate s in 1957. With

Quadratic Residue
In number theory, an integer ''q'' is called a quadratic residue modulo ''n'' if it is congruent to a perfect square modulo ''n''; i.e., if there exists an integer ''x'' such that: :x^2\equiv q \pmod. Otherwise, ''q'' is called a quadratic nonresidue modulo ''n''. Originally an abstract mathematical concept from the branch of number theory known as modular arithmetic, quadratic residues are now used in applications ranging from acoustical engineering to cryptography and the factoring of large numbers. History, conventions, and elementary facts Fermat, Euler, Lagrange, Legendre, and other number theorists of the 17th and 18th centuries established theorems and formed conjectures about quadratic residues, but the first systematic treatment is § IV of Gauss's ''Disquisitiones Arithmeticae'' (1801). Article 95 introduces the terminology "quadratic residue" and "quadratic nonresidue", and states that if the context makes it clear, the adjective "quadratic" may be dropped. For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]