Pólya–Szegő Inequality
   HOME
*





Pólya–Szegő Inequality
In mathematical analysis, the Pólya–Szegő inequality (or Szegő inequality) states that the Sobolev energy of a function in a Sobolev space does not increase under symmetric decreasing rearrangement. The inequality is named after the mathematicians George Pólya and Gábor Szegő. Mathematical setting and statement Given a Lebesgue measurable function u:\R^n\to \R^+,the symmetric decreasing rearrangement u^*:\R^n\to \R^+, is the unique function such that for every t \in \R, the sublevel set u^*^((t, +\infty)) is an open ball centred at the origin 0 \in \R^n that has the same Lebesgue measure as u^((t, +\infty)). Equivalently, u^* is the unique radial and radially nonincreasing function, whose strict sublevel sets are open and have the same measure as those of the function u. The Pólya–Szegő inequality states that if moreover u \in W^(\R^n), then u^* \in W^(\R^n) and : \int_ , \nabla u^*, ^p \leq \int_ , \nabla u, ^p. Applications of the inequality The Pólya–S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rayleigh Quotient
In mathematics, the Rayleigh quotient () for a given complex Hermitian matrix ''M'' and nonzero vector ''x'' is defined as: R(M,x) = . For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose x^ to the usual transpose x'. Note that R(M, c x) = R(M,x) for any non-zero scalar ''c''. Recall that a Hermitian (or real symmetric) matrix is diagonalizable with only real eigenvalues. It can be shown that, for a given matrix, the Rayleigh quotient reaches its minimum value \lambda_\min (the smallest eigenvalue of ''M'') when ''x'' is v_\min (the corresponding eigenvector). Similarly, R(M, x) \leq \lambda_\max and R(M, v_\max) = \lambda_\max. The Rayleigh quotient is used in the min-max theorem to get exact values of all eigenvalues. It is also used in eigenvalue algorithms (such as Rayleigh quotient iteration) to obtain an eigenvalue approximation from an eigenvector approximation. The range of the Rayleigh quotient ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sobolev Spaces
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of ''Lp''-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function. Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Their importance comes from the fact that weak solutions of some important partial differential equations exist in appropriate Sobolev spaces, even when there are no strong solutions in spaces of continuous functions with the derivatives understood in the classical sense. Motivation In this section and throughout the article \Omega is an open subset of \R^n. There are many c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riesz Rearrangement Inequality
In mathematics, the Riesz rearrangement inequality, sometimes called Riesz–Sobolev inequality, states that any three non-negative functions f : \mathbb^n \to \mathbb^+, g : \mathbb^n \to \mathbb^+ and h : \mathbb^n \to \mathbb^+ satisfy the inequality :\iint_ f(x) g(x-y) h(y) \, dx\,dy \le \iint_ f^*(x) g^*(x-y) h^*(y) \, dx\,dy, where f^* : \mathbb^n \to \mathbb^+, g^* : \mathbb^n \to \mathbb^+ and h^* : \mathbb^n \to \mathbb^+ are the symmetric decreasing rearrangements of the functions f, g and h respectively. History The inequality was first proved by Frigyes Riesz in 1930, and independently reproved by S.L.Sobolev in 1938. Brascamp, Lieb and Luttinger have shown that can be generalized to arbitrarily (but finitely) many functions acting on arbitrarily many variables. Applications The Riesz rearrangement inequality can be used to prove the Pólya–Szegő inequality. Proofs One-dimensional case In the one-dimensional case, the inequality is first proved when th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Heat Kernel
In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature (typically zero), such that an initial unit of heat energy is placed at a point at time ''t'' = 0. ] The most well-known heat kernel is the heat kernel of ''d''-dimensional Euclidean space R''d'', which has the form of a time-varying Gaussian function, :K(t,x,y) = \exp\left(t\Delta\right)(x,y) = \frac e^\qquad(x,y\in\mathbb^d,t>0)\, This solves the heat equation :\frac(t,x,y) = \Delta_x K(t,x,y)\, for all ''t'' > 0 and ''x'',''y'' ∈ R''d'', where Δ is the Laplace operator, with the i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hausdorff Measure
In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in ,∞to each set in \R^n or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set (if the set is finite) or ∞ if the set is infinite. Likewise, the one-dimensional Hausdorff measure of a simple curve in \R^n is equal to the length of the curve, and the two-dimensional Hausdorff measure of a Lebesgue-measurable subset of \R^2 is proportional to the area of the set. Thus, the concept of the Hausdorff measure generalizes the Lebesgue measure and its notions of counting, length, and area. It also generalizes volume. In fact, there are ''d''-dimensional Hausdorff measures for any ''d'' ≥ 0, which is not necessarily an integer. These measures are fundamenta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hölder's Inequality
In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of spaces. :Theorem (Hölder's inequality). Let be a measure space and let with . Then for all measurable real number, real- or complex number, complex-valued function (mathematics), functions and on , ::\, fg\, _1 \le \, f\, _p \, g\, _q. :If, in addition, and and , then Hölder's inequality becomes an equality if and only if and are Linear dependence, linearly dependent in , meaning that there exist real numbers , not both of them zero, such that -almost everywhere. The numbers and above are said to be Hölder conjugates of each other. The special case gives a form of the Cauchy–Schwarz inequality. Hölder's inequality holds even if is infinite, the right-hand side also being infinite in that case. Conversely, if is in and is in , then the pointwise product is in . Hölder's inequality is used to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Area Formula
Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve (a one-dimensional concept) or the volume of a solid (a three-dimensional concept). The area of a shape can be measured by comparing the shape to squares of a fixed size. In the International System of Units (SI), the standard unit of area is the square metre (written as m2), which is the area of a square whose sides are one metre long. A shape with an area of three square metres would have the same area as three such square ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dual Norm
In functional analysis, the dual norm is a measure of size for a continuous linear function defined on a normed vector space. Definition Let X be a normed vector space with norm \, \cdot\, and let X^* denote its continuous dual space. The dual norm of a continuous linear functional f belonging to X^* is the non-negative real number defined by any of the following equivalent formulas: \begin \, f \, &= \sup &&\ \\ &= \sup &&\ \\ &= \inf &&\ \\ &= \sup &&\ \\ &= \sup &&\ \;\;\;\text X \neq \ \\ &= \sup &&\bigg\ \;\;\;\text X \neq \ \\ \end where \sup and \inf denote the supremum and infimum, respectively. The constant 0 map is the origin of the vector space X^* and it always has norm \, 0\, = 0. If X = \ then the only linear functional on X is the constant 0 map and moreover, the sets in the last two rows will both be empty and consequently, their supremums will equal \sup \varnothing = - \infty instead of the correct value of 0. The ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Space
In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of \mathbb R^n with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane. It is also sometimes referred to as Lobachevsky space or Bolyai–Lobachevsky space after the names of the author who first published on the topic of hyperbolic geometry. Sometimes the qualificative "real" is added to differentiate it from complex hyperbolic spaces, quaternionic hyperbolic spaces and the octononic hyperbolic plane which are the other symmetric spaces of negative curvature. Hyperbolic space serves as the prototype of a Gromov hyperbolic space which is a far-reachin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sphere
A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the centre (geometry), centre of the sphere, and is the sphere's radius. The earliest known mentions of spheres appear in the work of the Greek mathematics, ancient Greek mathematicians. The sphere is a fundamental object in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubble (physics), Bubbles such as soap bubbles take a spherical shape in equilibrium. spherical Earth, The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres rolling, roll smoothly in any direction, so mos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]