Pythagoras Number
   HOME
*





Pythagoras Number
In mathematics, the Pythagoras number or reduced height of a field describes the structure of the set of squares in the field. The Pythagoras number ''p''(''K'') of a field ''K'' is the smallest positive integer ''p'' such that every sum of squares in ''K'' is a sum of ''p'' squares. A ''Pythagorean field'' is a field with Pythagoras number 1: that is, every sum of squares is already a square. Examples * Every non-negative real number is a square, so ''p''(R) = 1. * For a finite field of odd characteristic, not every element is a square, but all are the sum of two squares,Lam (2005) p. 36 so ''p'' = 2. * By Lagrange's four-square theorem, every positive rational number is a sum of four squares, and not all are sums of three squares, so ''p''(Q) = 4. Properties * Every positive integer occurs as the Pythagoras number of some formally real field.Lam (2005) p. 398 * The Pythagoras number is related to the Stufe by ''p''(''F'') ≤ ''s''( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pythagorean Field
In algebra, a Pythagorean field is a field in which every sum of two squares is a square: equivalently it has Pythagoras number equal to 1. A Pythagorean extension of a field F is an extension obtained by adjoining an element \sqrt for some \lambda in F. So a Pythagorean field is one closed under taking Pythagorean extensions. For any field F there is a minimal Pythagorean field F^ containing it, unique up to isomorphism, called its Pythagorean closure.Milnor & Husemoller (1973) p. 71 The ''Hilbert field'' is the minimal ordered Pythagorean field.Greenberg (2010) Properties Every Euclidean field (an ordered field in which all non-negative elements are squares) is an ordered Pythagorean field, but the converse does not hold.Martin (1998) p. 89 A quadratically closed field is Pythagorean field but not conversely (\mathbf is Pythagorean); however, a non formally real Pythagorean field is quadratically closed.Rajwade (1993) p.230 The Witt ring of a Pythagorean field is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod when is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order p^k, all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set which is a field; this means that multiplication, addition, subtraction and division (excluding division by zero) are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest number of times one must use the ring's identity element, multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lagrange's Four-square Theorem
Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as the sum of four integer squares. That is, the squares form an additive basis of order four. p = a_0^2 + a_1^2 + a_2^2 + a_3^2 where the four numbers a_0, a_1, a_2, a_3 are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows: \begin 3 & = 1^2+1^2+1^2+0^2 \\ pt31 & = 5^2+2^2+1^2+1^2 \\ pt310 & = 17^2+4^2+2^2+1^2 \\ pt& = 16^2 + 7^2 + 2^2 +1^2 \\ pt& = 15^2 + 9^2 + 2^2 +0^2 \\ pt& = 12^2 + 11^2 + 6^2 + 3^2. \end This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem. Historical development From examples given in the '' Arithmetica,'' it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. Bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface , or blackboard bold \mathbb. A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real number that is not rational is called irrational. Irrational numbers include , , , and . Since the set of rational numbers is countable, and the set of real numbers is uncountable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formally Real Field
In mathematics, in particular in field theory and real algebra, a formally real field is a field that can be equipped with a (not necessarily unique) ordering that makes it an ordered field. Alternative definitions The definition given above is not a first-order definition, as it requires quantifiers over sets. However, the following criteria can be coded as (infinitely many) first-order sentences in the language of fields and are equivalent to the above definition. A formally real field ''F'' is a field that also satisfies one of the following equivalent properties:Milnor and Husemoller (1973) p.60 * −1 is not a sum of squares in ''F''. In other words, the Stufe of ''F'' is infinite. (In particular, such a field must have characteristic 0, since in a field of characteristic ''p'' the element −1 is a sum of 1s.) This can be expressed in first-order logic by \forall x_1 (-1 \ne x_1^2), \forall x_1 x_2 (-1 \ne x_1^2 + x_2^2), etc., with one sentence for each number of va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stufe (algebra)
In field theory, a branch of mathematics, the Stufe (/ ʃtuːfə/; German: level) ''s''(''F'') of a field ''F'' is the least number of squares that sum to −1. If −1 cannot be written as a sum of squares, ''s''(''F'') = \infty. In this case, ''F'' is a formally real field. Albrecht Pfister proved that the Stufe, if finite, is always a power of 2, and that conversely every power of 2 occurs. Powers of 2 If s(F)\ne\infty then s(F)=2^k for some natural number k.Rajwade (1993) p.13Lam (2005) p.379 ''Proof:'' Let k \in \mathbb N be chosen such that 2^k \leq s(F) < 2^. Let n = 2^k. Then there are s = s(F) elements e_1, \ldots, e_s \in F\setminus\ such that :0 = \underbrace_ + \underbrace_\;. Both a and b are sums of n squares, and a \ne 0, since otherwise s(F)< 2^k, contrary to the assumption on k. According to the theory of

Height Of A Field
In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field. Definition Fix a field ''k'' of characteristic not equal to two. All vector spaces will be assumed to be finite-dimensional. We say that two spaces equipped with symmetric bilinear forms are equivalent if one can be obtained from the other by adding a metabolic quadratic space, that is, zero or more copies of a hyperbolic plane, the non-degenerate two-dimensional symmetric bilinear form with a norm 0 vector.Milnor & Husemoller (1973) p. 14 Each class is represented by the core form of a Witt decomposition.Lorenz (2008) p. 30 The Witt group of ''k'' is the abelian group ''W''(''k'') of equivalence classes of non-degenerate symmetric bilinear forms, with the group operation corresponding to the orthogonal direct sum of forms. It is additively generated by the classes of one-dimensional forms.Milnor & Husemoll ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]