Pursuing Stacks
   HOME
*





Pursuing Stacks
''Pursuing Stacks'' (french: À la Poursuite des Champs) is an influential 1983 mathematical manuscript by Alexander Grothendieck. It consists of a 12-page letter to Daniel Quillen followed by about 600 pages of research notes. The topic of the work is a generalized homotopy theory using higher category theory. The word "stacks" in the title refers to what are nowadays usually called " ∞-groupoids", one possible definition of which Grothendieck sketches in his manuscript. (The stacks of algebraic geometry, which also go back to Grothendieck, are not the focus of this manuscript.) Among the concepts introduced in the work are derivators and test categories. Some parts of the manuscript were later developed in: * * Overview of manuscript I. The letter to Daniel Quillen Pursuing stacks started out as a letter from Grothendieck to Daniel Quillen. In this letter he discusses Quillen's progress on the foundations for homotopy theory and remarked on the lack of progress since ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


N-group (category Theory)
In mathematics, an ''n''-group, or ''n''-dimensional higher group, is a special kind of ''n''-category that generalises the concept of group to higher-dimensional algebra. Here, n may be any natural number or infinity. The thesis of Alexander Grothendieck's student Hoàng Xuân Sính was an in-depth study of 2-groups under the moniker 'gr-category'. The general definition of n-group is a matter of ongoing research. However, it is expected that every topological space will have a ''homotopy n-group'' at every point, which will encapsulate the Postnikov tower of the space up to the homotopy group \pi_n, or the entire Postnikov tower for n=\infty. Examples Eilenberg-Maclane spaces One of the principal examples of higher groups come from the homotopy types of Eilenberg–MacLane spaces K(A,n) since they are the fundamental building blocks for constructing higher groups, and homotopy types in general. For instance, every group G can be turned into an Eilenberg-Maclane space K ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Derivator
In mathematics, derivators are a proposed frameworkpg 190-195 for homological algebra giving a foundation for both abelian and non-abelian homological algebra and various generalizations of it. They were introduced to address the deficiencies of derived categories (such as the non-functoriality of the cone construction) and provide at the same time a language for homotopical algebra. Derivators were first introduced by Alexander Grothendieck in his long unpublished 1983 manuscript '' Pursuing Stacks''. They were then further developed by him in the huge unpublished 1991 manuscript ''Les Dérivateurs'' of almost 2000 pages. Essentially the same concept was introduced (apparently independently) by Alex Heller. The manuscript has been edited for on-line publication by Georges Maltsiniotis. The theory has been further developed by several other people, including Heller, Franke, Keller and Groth. Motivations One of the motivating reasons for considering derivators is the lack of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Hypothesis
In category theory, a branch of mathematics, Grothendieck's homotopy hypothesis states that the ∞-groupoids are spaces. If we model our ∞-groupoids as Kan complexes, then the homotopy types of the geometric realizations of these sets give models for every homotopy type. It is conjectured that there are many different "equivalent" models for ∞-groupoids all which can be realized as homotopy types. See also *''Pursuing Stacks'' *N-group (category theory) In mathematics, an ''n''-group, or ''n''-dimensional higher group, is a special kind of ''n''-category that generalises the concept of group to higher-dimensional algebra. Here, n may be any natural number or infinity. The thesis of Alexander G ... References *John BaezThe Homotopy Hypothesis* * External links *What is the mistake in the proof of the Homotopy hypothesis by Kapranov and Voevodsky?J ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Category
In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any model category and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra. The naive homotopy category The category of topological spaces Top has objects the topological spaces and morphisms the continuous maps between them. The older definition of the homotopy category hTop, called the naive homotopy category for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps ''f'': ''X'' → ''Y'' are considered the same in the naive hom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cubical Set
In topology, a branch of mathematics, a cubical set is a set-valued contravariant functor on the category of (various) ''n''-cubes. Cubical sets have been often considered as an alternative to simplicial sets in combinatorial topology, including in the early work of Daniel Kan and Jean-Pierre Serre. It has been also developed in computer science, in particular in concurrency theory and in homotopy type theory. See also *Simplicial presheaf References *http://ncatlab.org/nlab/show/cubical+set * Rick Jardine John Frederick "Rick" Jardine (born December 6, 1951 in Belleville, Canada) is a Canadian mathematician working in the fields of homotopy theory, category theory, and number theory. Biography Jardine obtained his Ph.D. from the University ...Cubical sets Lecture 12 in "Lectures on simplicial presheaves" https://web.archive.org/web/20110104053206/http://www.math.uwo.ca/~jardine/papers/sPre/index.shtml Topology {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Michèle Raynaud
Michèle Raynaud (born Michèle Chaumartin; ) is a French mathematician, who works on algebraic geometry and who worked with Alexandre Grothendieck in Paris in the 1960s at the Institut des hautes études scientifiques (IHÉS). Biography Raynaud was a member of the séminaire de géométrie algébrique du Bois Marie (SGA) 1 and 2 and obtained her doctorate in 1972, supervised by Grothendieck at Paris Diderot University. Her thesis was entitled ''Théorèmes de Lefschetz en cohomologie cohérente et en cohomologie étale''. Grothendieck wrote about her doctoral thesis in ''Récoltes et Semailles'' (p.168 Chapitre 8.1.) describing it as original, entirely independent, and a major work. Michèle Raynaud was married to the mathematician Michel Raynaud Michel Raynaud (; 16 June 1938 – 10 March 2018 Décès de Mich ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Six Operations
In mathematics, Grothendieck's six operations, named after Alexander Grothendieck, is a formalism in homological algebra, also known as the six-functor formalism. It originally sprang from the relations in étale cohomology that arise from a morphism of schemes . The basic insight was that many of the elementary facts relating cohomology on ''X'' and ''Y'' were formal consequences of a small number of axioms. These axioms hold in many cases completely unrelated to the original context, and therefore the formal consequences also hold. The six operations formalism has since been shown to apply to contexts such as ''D''-modules on algebraic varieties, sheaves on locally compact topological spaces, and motives. The operations The operations are six functors. Usually these are functors between derived categories and so are actually left and right derived functors. * the direct image f_* * the inverse image f^* * the proper (or extraordinary) direct image f_! * the proper (or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dold–Kan Correspondence
In mathematics, more precisely, in the theory of simplicial sets, the Dold–Kan correspondence (named after Albrecht Dold and Daniel Kan) states that there is an equivalence between the category of (nonnegatively graded) chain complexes and the category of simplicial abelian groups. Moreover, under the equivalence, the nth homology group of a chain complex is the nth homotopy group of the corresponding simplicial abelian group, and a chain homotopy corresponds to a simplicial homotopy. (In fact, the correspondence preserves the respective standard model structures.) Example: Let ''C'' be a chain complex that has an abelian group ''A'' in degree ''n'' and zero in all other degrees. Then the corresponding simplicial group is the Eilenberg–MacLane space K(A, n). There is also an ∞-category-version of the Dold–Kan correspondence. The book "Nonabelian Algebraic Topology" cited below has a Section 14.8 on cubical versions of the Dold–Kan theorem, and relates them to a prev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Hypothesis
In category theory, a branch of mathematics, Grothendieck's homotopy hypothesis states that the ∞-groupoids are spaces. If we model our ∞-groupoids as Kan complexes, then the homotopy types of the geometric realizations of these sets give models for every homotopy type. It is conjectured that there are many different "equivalent" models for ∞-groupoids all which can be realized as homotopy types. See also *''Pursuing Stacks'' *N-group (category theory) In mathematics, an ''n''-group, or ''n''-dimensional higher group, is a special kind of ''n''-category that generalises the concept of group to higher-dimensional algebra. Here, n may be any natural number or infinity. The thesis of Alexander G ... References *John BaezThe Homotopy Hypothesis* * External links *What is the mistake in the proof of the Homotopy hypothesis by Kapranov and Voevodsky?J ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gerbe
In mathematics, a gerbe (; ) is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud (mathematician), Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of Deformation theory, deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them. "Gerbe" is a French (and archaic English) word that literally means wheat sheaf (agriculture), sheaf. Definitions Gerbes on a topological space A gerbe on a topological space S is a stack (mathematics), stack \mathcal of groupoids over S which is ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]