Proof By Contrapositive
   HOME
*





Proof By Contrapositive
In logic, the contrapositive of a conditional statement is formed by negating both terms and reversing the direction of inference. More specifically, the contrapositive of the statement "if ''A'', then ''B''" is "if not ''B'', then not ''A''." A statement and its contrapositive are logically equivalent, in the sense that if the statement is true, then its contrapositive is true and vice versa. In mathematics, proof by contrapositive, or proof by contraposition, is a rule of inference used in proofs, where one infers a conditional statement from its contrapositive. In other words, the conclusion "if ''A'', then ''B''" is inferred by constructing a proof of the claim "if not ''B'', then not ''A''" instead. More often than not, this approach is preferred if the contrapositive is easier to prove than the original conditional statement itself. Logically, the validity of proof by contrapositive can be demonstrated by the use of the following truth table, where it is shown that ''p'' â ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Contraposition
In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as Proof by contrapositive, proof by contraposition. The contrapositive of a statement has its Antecedent (logic), antecedent and consequent Inverse (logic), inverted and Conversion (logic), flipped. Material conditional, Conditional statement P \rightarrow Q. In Logical connective, formulas: the contrapositive of P \rightarrow Q is \neg Q \rightarrow \neg P . If ''P'', Then ''Q''. — If not ''Q'', Then not ''P''. ''"''If ''it is raining,'' then ''I wear my coat" —'' "If ''I don't wear my coat,'' then ''it isn't raining."'' The law of contraposition says that a conditional statement is true if, and only if, its contrapositive is true. The contrapositive ( \neg Q \rightarrow \neg P ) can be compared with three other statements: ;Inverse (logic), Inversion (the inverse), \neg P \rightarrow \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Indicative Conditional
In natural languages, an indicative conditional is a conditional sentence such as "If Leona is at home, she isn't in Paris", whose grammatical form restricts it to discussing what could be true. Indicatives are typically defined in opposition to counterfactual conditionals, which have extra grammatical marking which allows them to discuss eventualities which are no longer possible. Indicatives are a major topic of research in philosophy of language, philosophical logic, and linguistics. Open questions include which logical operation indicatives denote, how such denotations could be composed from their grammatical form, and the implications of those denotations for areas including metaphysics, psychology of reasoning, and philosophy of mathematics. Formal analyses Early analyses identified indicative conditionals with the logical operation known as the material conditional. According to the material conditional analysis, an indicative "If A then B" is true unless A is true and B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rule Of Inference
In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called ''modus ponens'' takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion. Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general designation. But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Proof
A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work. Proofs employ logic expressed in mathematical symbols ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truth Table
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. In particular, truth tables can be used to show whether a propositional expression is true for all legitimate input values, that is, logically valid. A truth table has one column for each input variable (for example, P and Q), and one final column showing all of the possible results of the logical operation that the table represents (for example, P XOR Q). Each row of the truth table contains one possible configuration of the input variables (for instance, P=true Q=false), and the result of the operation for those values. See the examples below for further clarification. Ludwig Wittgenstein is generally credited with inventing and popularizing the truth table ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proof By Contradiction
In logic and mathematics, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known as indirect proof, proof by assuming the opposite, and ''reductio ad impossibile''. It is an example of the weaker logical refutation ''reductio ad absurdum''. A mathematical proof employing proof by contradiction usually proceeds as follows: #The proposition to be proved is ''P''. #We assume ''P'' to be false, i.e., we assume ''¬P''. #It is then shown that ''¬P'' implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, ''Q'' and ''¬Q'', and appealing to the Law of noncontradiction. #Since assuming ''P'' to be false leads to a contradiction, it is concluded that ''P'' is in fact true. An important special case is the existence proof by contradiction: in order to demonstrate the existence of an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Contradiction
In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's law of noncontradiction states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect." In modern formal logic and type theory, the term is mainly used instead for a ''single'' proposition, often denoted by the falsum symbol \bot; a proposition is a contradiction if false can be derived from it, using the rules of the logic. It is a proposition that is unconditionally false (i.e., a self-contradictory proposition). This can be generalized to a collection of propositions, which is then said to "contain" a contradiction. History By creation of a paradox, Plato's '' Euthydemus'' dialogue demonstrates the need for the notion of ''contradiction''. In the ensuing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof By Contradiction
In logic and mathematics, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known as indirect proof, proof by assuming the opposite, and ''reductio ad impossibile''. It is an example of the weaker logical refutation ''reductio ad absurdum''. A mathematical proof employing proof by contradiction usually proceeds as follows: #The proposition to be proved is ''P''. #We assume ''P'' to be false, i.e., we assume ''¬P''. #It is then shown that ''¬P'' implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, ''Q'' and ''¬Q'', and appealing to the Law of noncontradiction. #Since assuming ''P'' to be false leads to a contradiction, it is concluded that ''P'' is in fact true. An important special case is the existence proof by contradiction: in order to demonstrate the existence of an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Direct Proof
In mathematics and logic, a direct proof is a way of showing the truth or falsehood of a given statement by a straightforward combination of established facts, usually axioms, existing lemmas and theorems, without making any further assumptions. Cupillari, Antonella. ''The Nuts and Bolts of Proofs''. Academic Press, 2001. Page 3. In order to directly prove a conditional statement of the form "If ''p'', then ''q''", it suffices to consider the situations in which the statement ''p'' is true. Logical deduction is employed to reason from assumptions to conclusion. The type of logic employed is almost invariably first-order logic, employing the quantifiers ''for all'' and ''there exists''. Common proof rules used are modus ponens and universal instantiation.C. Gupta, S. Singh, S. Kumar ''Advanced Discrete Structure''. I.K. International Publishing House Pvt. Ltd., 2010. Page 127. In contrast, an indirect proof may begin with certain hypothetical scenarios and then proceed to elimina ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modus Tollens
In propositional logic, ''modus tollens'' () (MT), also known as ''modus tollendo tollens'' (Latin for "method of removing by taking away") and denying the consequent, is a deductive argument form and a rule of inference. ''Modus tollens'' takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from ''P implies Q'' to ''the negation of Q implies the negation of P'' is a valid argument. The history of the inference rule ''modus tollens'' goes back to antiquity. The first to explicitly describe the argument form ''modus tollens'' was Theophrastus. ''Modus tollens'' is closely related to '' modus ponens''. There are two similar, but invalid, forms of argument: affirming the consequent and denying the antecedent. See also contraposition and proof by contrapositive. Explanation The form of a ''modus tollens'' argument resembles a syllog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]